首页> 外文期刊>Journal of the American Chemical Society >Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation
【24h】

Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation

机译:用于低温CO氧化的双相Pd-Au合金催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

Low-temperature CO oxidation over a compositional series of Pd−Au nanoalloy catalysts supported on silica fume was studied. Except for the pure metals, these materials invariably showed biphasic separation into palladium- and gold-rich components. Performance was optimal for a catalyst of bulk composition Pd4Au1, a mixture of Pd90Au10 (72.5 at. %) and Pd31Au69 (27.5 at. %), that was remarkably active at 300 K and more stable than a pure Au catalyst. For bulk materials dominated by Pd (Pd:Au = 16:1; 8:1; 4:1), the palladium-rich alloy fraction frequently adopted hollow sphere or annular morphology, while the gold-rich crystals were often multiply twinned. Quantitative powder X-ray diffraction (XRD) showed that under the synthesis conditions used, the Au solubility limit in Pd crystals was 12 at. %, while Pd was more soluble in Au (31 at. %). This was consistent with X-ray photoelectron spectroscopy (XPS), which revealed that the surfaces of Pd-rich alloys were enriched in gold relative to the bulk composition. In situ Fourier transform infrared spectra collected during CO oxidation contained a new band at 2114 cm−1 (attributed to linear CO−Au/Au−Pd bonds) and reduced intensity of a band at 2090 cm−1 (arising from a linear CO−Pd bond) with escalating Au content, indicating that the Pd sites became increasingly obscured by Au. High-resolution electron micrographs (HRTEM) of the Pd-rich alloys revealed atomic scale surface defects consistent with this interpretation. These results demonstrate that gold-containing biphasic Pd nanoalloys may be highly durable alternatives for a range of catalytic reactions.
机译:研究了负载在硅粉上的一系列Pd-Au纳米合金催化剂上的低温CO氧化。除了纯金属之外,这些材料始终显示出两相分离,变成了富含钯和金的成分。对于块状组成Pd 4 Au 1 ,Pd 90 Au 10 ( 72.5 at。%)和Pd 31 Au 69 (27.5 at。%),在300 K下有显着活性,并且比纯Au催化剂稳定。对于以Pd为主的块状材料(Pd:Au = 16:1; 8:1; 4:1),富钯合金成分经常采用空心球或环形形态,而富金晶体则经常成倍孪生。定量粉末X射线衍射(XRD)表明,在所使用的合成条件下,Pd晶体中的Au溶解度极限为12at。 ,而Pd更溶于Au(31 at。%)。这与X射线光电子能谱(XPS)一致,后者揭示了富Pd合金的表面相对于整体成分富集了金。 CO氧化过程中收集的原位傅立叶变换红外光谱在2114 cm -1 处包含一个新谱带(归因于线性CO-Au / Au-Pd键),并且强度降低了2090 cm -1 (由线性CO-Pd键产生)随着Au含量的增加,表明Pd位置越来越被Au所掩盖。富含Pd的合金的高分辨率电子显微照片(HRTEM)显示出与该解释一致的原子尺度表面缺陷。这些结果表明,含金双相Pd纳米合金可能是一系列催化反应的高度耐用替代品。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第30期|p.10398-10406|共9页
  • 作者

    Jing Xu;

  • 作者单位

    State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China, and Centre for Advanced Microcopy, Australian National University, Canberra, ACT 2601, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号