首页> 外文期刊>Journal of the American Chemical Society >Hydrogenation-Induced Surface Polarity Recognition and Proton Memory Behavior at Protic-Ionic-Liquid/Oxide Electric-Double-Layer Interfaces
【24h】

Hydrogenation-Induced Surface Polarity Recognition and Proton Memory Behavior at Protic-Ionic-Liquid/Oxide Electric-Double-Layer Interfaces

机译:质子离子液体/氧化物电双层界面上氢化诱导的表面极性识别和质子记忆行为

获取原文
获取原文并翻译 | 示例
       

摘要

The electric-double-layer (EDL) formed at liquid/solid interfaces provides a broad and interdisciplinary attraction in terms of electrochemistry, photochemistry, catalysts, energy storage, and electronics. Especially in recent years, much effort has been devoted to the fundamental understanding and practical applications of transistor configurations with EDLs because of their ability for high-density charge accumulation. However, to exploit additional new functionalities of such an emerging interface is not only of great importance but also a huge challenge. Here, we demonstrate that, by introducing protic ionic liquid (PIL) as the gate dielectric for ZnO EDL transistors (EDLTs), small and chemically active ions, such as protons and hydroxyls, can serve as an adsorption medium to extend the interfacial functionalities of EDLTs. By selectively driving the H+ or OH− groups onto ZnO channel surfaces with an electric field, the charged adsorbates interact with surface atoms in different adsorption mechanisms, showing remarkable variations in electron transport and providing a possibility for the recognition of surface polarity. Most significantly, the large hysteresis in the transfer characteristics of PIL−EDLTs makes the device available and promising for nonvolatile proton memory devices via surface hydrogenation and dehydrogenation processes. Such a finding provides us with new opportunities to understand liquid/solid heterogeneous interface phenomena and to extend the practical functions of EDLs through controllable interfacial interaction.
机译:在液/固界面处形成的双电层(EDL)在电化学,光化学,催化剂,能量存储和电子学方面提供了广泛而跨学科的吸引力。特别是近年来,由于具有EDL的晶体管配置具有高密度电荷积聚的能力,因此已经对基于EDL的晶体管配置的基本理解和实际应用进行了很多努力。然而,利用这种新兴接口的其他新功能不仅非常重要,而且也是巨大的挑战。在这里,我们证明,通过引入质子离子液体(PIL)作为ZnO EDL晶体管(EDLT)的栅极电介质,小的化学活性离子(如质子和羟基)可以用作吸附介质,从而扩展ZnO EDL晶体管的界面功能。 EDLT。通过用电场选择性地将H +或OH-基团驱动到ZnO通道表面,带电的被吸附物以不同的吸附机理与表面原子相互作用,显示出电子传输的显着变化,并为识别表面极性提供了可能性。最重要的是,PIL-EDLTs的传输特性中的大滞后使得该器件可用于表面质子交换和表面氢化和脱氢工艺的非易失性质子存储器件。这一发现为我们提供了新的机会,以了解液体/固体异质界面现象,并通过可控的界面相互作用扩展EDL的实际功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号