首页> 外文期刊>Journal of the American Society >Ab Inito Modeling of Ethylbenzene Dehydrogenase Reaction Mechanism
【24h】

Ab Inito Modeling of Ethylbenzene Dehydrogenase Reaction Mechanism

机译:乙苯脱氢酶反应机理的从头算模型

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract: Density functional theory calculations were performed to study the mechanism of ethylbenzenenoxidation by ethylbenzene dehydrogenase (EBDH). EBDH is a bacterial molybdopterin enzyme capable ofnstereospecific anaerobic hydroxylation of alkylaromatic compounds to secondary alcohols. It is a keynbiocatalyst in the metabolism of ethylbenzene-degrading bacteria such as Aromatoleum aromaticum, whichnconverts ethylbenzene to (S)-1-phenylethanol. The recently determined EBDH structure enabled thentheoretical description of the ethylbenzene oxidation mechanism. In this work, theoretical calculations andnkinetic isotopic experiments were conducted and combined in order to elucidate the reaction mechanism.nWe considered three aspects: (i) Does the reaction concur with one two-electron or two one-electronntransfers? (ii) Is the active site His192 important for the reaction and what is its protonation state? (iii)nWhat catalytic consequences have different possible arrangements of the molybdopterin ligand? The mostnimportant outcome of the calculations is that mechanisms involving two one-electron transfers and a radical-ntype intermediate have lower energy barriers than the corresponding two-electron transfer mechanismsnand are, therefore, more plausible. The mechanism involves two transition states: radical-type TS1nassociated with the C H bond cleavage, and carbocation-type TS2 associated with the transfer of thensecond electron and OH rebound. Using models with protonated and nonprotonated His 192, we concludenthat this amino acid takes part in the mechanism. However, as both models yielded plausible reactionnpathways, its protonation state cannot be easily predicted. Qualitative agreement was reached betweennthe calculated kinetic isotope effects (KIE) obtained for radical TS1 and the KIE measured experimentallynat optimum pH, but we observed a very strong pH dependence of KIE throughout the investigated pHnrange (3.1 for pH 6, 5.9 for pH 7, up to 10.5 at pH 8.). This may be explained by assuming a gradual shiftnof the rate-determining step from TS1 associated with high KIE to TS2 associated with low KIE with lowerednpH and an increasing contribution of proton/deuteron tunneling associated with high pH. Finally, modelsnwere calculated with different signs of the conformational twist of the pterin ligands, yielding only slightlyndifferent energy profiles of the reaction pathways.
机译:摘要:进行了密度泛函理论计算,研究了乙苯脱氢酶(EBDH)对乙苯氧化的机理。 EBDH是一种细菌钼蝶呤酶,能够将烷基芳香族化合物立体特异性厌氧羟基化为仲醇。它是降解乙苯的细菌(如香气中的芳香菌)代谢的关键生物催化剂,该细菌将乙苯转化为(S)-1-苯基乙醇。最近确定的EBDH结构使理论上可以描述乙苯的氧化机理。在这项工作中,进行了理论计算和动力学同位素实验,并将其结合起来,以阐明反应机理。n我们考虑了三个方面:(i)反应是同时具有两个二电子转移还是两个单一电子转移? (ii)His192的活性位点对反应重要吗?质子化状态是什么? (iii)n钼蝶呤配体的不同可能的催化作用是什么?计算的最重要结果是,涉及两个单电子转移和一个自由基-n型中间体的机理比相应的两个电子转移机理具有更低的能垒,因此更合理。该机制涉及两个过渡状态:与C H键断裂相关的自由基型TS1,以及与第二电子的转移和OH反弹相关的碳阳离子型TS2。使用带有质子化和非质子化His 192的模型,我们得出结论,该氨基酸参与了该机制。然而,由于两个模型都产生了合理的反应路径,因此其质子化状态无法轻易预测。在自由基TS1的计算出的动力学同位素效应(KIE)与实验测得的KIE之间未达到最佳pH的定性一致性,但我们在整个研究的pH范围内观察到KIE对pH的依赖性非常强(pH 6,3.1,pH 7,5.9 pH值8至10.5)。这可以通过假设速率确定步骤从与高KIE相关的TS1逐渐转移到与低KIE相关且具有较低pH的TS2和与高pH相关的质子/氘核隧穿贡献增加的速率确定步骤来解释。最后,用不同的蝶呤配体构象符号计算模型,仅产生反应路径的能量谱稍有不同。

著录项

  • 来源
    《Journal of the American Society》 |2010年第17期|p.6014-6024|共11页
  • 作者单位

    Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8,30-239 Krakow, Poland, and Laboratory of Microbial Biochemistry, Philipps-Uni ersity ofMarburg, Marburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号