首页> 外文期刊>Journal of the American Ceramic Society >The Predictive Power of Electronic Polarizability for Tailoring the Refractivity of High-Index Glasses: Optical Basicity Versus the Single Oscillator Model
【24h】

The Predictive Power of Electronic Polarizability for Tailoring the Refractivity of High-Index Glasses: Optical Basicity Versus the Single Oscillator Model

机译:电子极化率对调节高折射率玻璃的折射率的预测能力:光学碱度与单振荡器模型

获取原文
获取原文并翻译 | 示例
       

摘要

High-density (~8 g/cm~3) heavy metal oxide glasses composed of PbO, Bi_2O_3, and Ga_2O_3 were produced, and refractivity parameters (refractive index and density) were computed and measured. Refractive indices were measured at six discrete wavelengths from 0.633 to 10.59 μm using a prism coupler, and data were fitted to the Sellmeier expression. Optical basicity was computed using three models-average electronegativity, ionic-covalent parameter, and energy gap-and the results were used to compute oxygen polarizability and subsequently the refractive index. Single oscillator energy and dispersion energy were calculated from experimental indices and from oxide energy parameters. The predicted glass index dispersion based on oxide oscillator parameters underestimates the measured index by only 3%-4%. The predicted glass index from optical basicity, based on oxide energy gaps, underpredicts the index at 0.633 μm by only 2%. The calculated glass energy gap based on this optical basicity overpredicts the experimental optical gap by 6%-10%. Thus, we have shown that the density, the refractive index in the visible, and the energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. The relative contributions of the oxides to the total polarizability were assessed, providing an additional insight into controlling the refractivity of high-index glasses.
机译:生产了由PbO,Bi_2O_3和Ga_2O_3组成的高密度(〜8 g / cm〜3)重金属氧化物玻璃,并计算和测量了折射率(折射率和密度)。使用棱镜耦合器在0.633至10.59μm的六个离散波长处测量折射率,并将数据拟合至Sellmeier表达式。光学碱度是使用三种模型计算的,即平均电负性,离子共价参数和能隙,然后将结果用于计算氧的极化率,然后计算折射率。从实验指标和氧化物能量参数计算出单振荡器能量和色散能量。基于氧化物振荡器参数的预测玻璃指数分散度仅将测得的指数低估3%-4%。基于氧化物能隙,从光学碱度预测的玻璃折射率将折射率低估了0.633μm,仅为2%。基于该光学碱度计算出的玻璃能隙高估了实验光隙6%-10%。因此,我们已经表明,仅使用组成,组成氧化物的光学碱度值和部分摩尔体积系数,就可以合理地预测密度,可见光中的折射率和能隙。评估了氧化物对总极化率的相对贡献,为控制高折射率玻璃的折射率提供了新的见解。

著录项

  • 来源
    《Journal of the American Ceramic Society》 |2010年第6期|P.1650-1662|共13页
  • 作者单位

    Pacific Northwest National Laboratory, Richland, Washington 99352 The American Ceramic Society;

    rnPacific Northwest National Laboratory, Richland, Washington 99352 The American Ceramic Society;

    rnPacific Northwest National Laboratory, Richland, Washington 99352 The American Ceramic Society;

    rnPacific Northwest National Laboratory, Richland, Washington 99352;

    rnPacific Northwest National Laboratory, Richland, Washington 99352;

    rnClemson University, Clemson, South Carolina 29634 The American Ceramic Society;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:40:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号