...
首页> 外文期刊>Journal of Aircraft >Spanwise Lift Distribution for Blended Wing Body Aircraft
【24h】

Spanwise Lift Distribution for Blended Wing Body Aircraft

机译:翼型混合飞机的翼展方向升力分布

获取原文
获取原文并翻译 | 示例
           

摘要

A study is presented of the effects of spanwise lift distribution on aerodynamic efficiency for a blended wing body (BWB) configuration of a given baseline planform. The baseline geometry is initially assessed by a high-fidelity aerodynamic model based on a multiblock structured grid Reynolds-averaged Navier-Stokes (RANS) solution. The accuracy of the simulation is investigated by a grid sensitivity study regarding total drag and its pressure drag and skin-friction drag components. Excessive outer wing loading with associated shock wave, hence, wave drag, has been revealed to be the major factor degrading the aerodynamic performance of the baseline BWB model. To relieve the outer wing, an efficient low-fidelity panel method aerodynamic model is used for the inverse design to achieve the target lift distributions through the variation of twist distribution along the span, shifting the load inboard. For the given BWB geometry, the baseline model is retwisted to achieve an elliptic, a triangular, and an averaged elliptic/triangular spanwise loading distribution. The designs are then analyzed using the high-fidelity RANS aerodynamic model. The wave drag component of the total drag for different span loadings is extracted from the flowfield solution to gain insight into the drag reduction provided by the new twist designs. At the high subsonic speed of Mach 0.85, a fine balance of the vortex drag and the wave drag is found to be essential to achieve the best aerodynamic performance. The elliptic lift distribution no longer gives the minimum drag if the nonlinear compressibility effects, that is, shock waves, feature in the flowfield of the designed aircraft. Although the concern is primarily with the transonic aerodynamic performance, the effects of.the various lift distributions on pitching moments, therefore, trim and their implication on structural weight, are also discussed.
机译:对于给定的基准平面形式,翼展方向升力分布对混合翼体(BWB)构型的空气动力效率的影响进行了研究。基线几何形状最初是通过基于多块结构网格雷诺平均Navier-Stokes(RANS)解决方案的高保真空气动力学模型进行评估的。通过关于总阻力及其压力阻力和皮肤摩擦阻力分量的网格敏感性研究,研究了仿真的准确性。揭示了过多的外机翼负载以及相关的冲击波,因此波阻是导致基线BWB模型的空气动力性能下降的主要因素。为了减轻外机翼的负担,采用高效的低保真面板法空气动力学模型进行逆向设计,以通过沿跨度改变扭曲分布来实现目标升力分布,从而将载荷转移到舷内。对于给定的BWB几何形状,将基线模型扭曲以实现椭圆形,三角形和平均椭圆/三角形翼展方向载荷分布。然后使用高保真RANS空气动力学模型对设计进行分析。从流场解决方案中提取了不同跨度载荷下总阻力的波浪阻力分量,以深入了解新扭曲设计提供的阻力减小。在0.85马赫的高亚音速下,发现涡流阻力和波浪阻力的良好平衡对于实现最佳空气动力学性能至关重要。如果非线性压缩效应(即冲击波)出现在设计飞机的流场中,则椭圆升力分布将不再具有最小的阻力。尽管主要关注跨音速空气动力学性能,但是还讨论了各种升力分布对俯仰力矩的影响,因此,还讨论了纵倾及其对结构重量的影响。

著录项

  • 来源
    《Journal of Aircraft》 |2005年第2期|p.356-365|共10页
  • 作者单位

    University of Sheffield, Sheffield, England S1 3J D, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号