...
首页> 外文期刊>Journal of Aircraft >Detached-Eddy Simulations of Vortex Breakdown over a 70-Degree Delta Wing
【24h】

Detached-Eddy Simulations of Vortex Breakdown over a 70-Degree Delta Wing

机译:分离涡旋模拟70度三角翼上的涡旋破坏

获取原文
获取原文并翻译 | 示例
           

摘要

An understanding of the vortical structures that comprise the vortical flowfleld around slender bodies is essential for the development of highly maneuverable and high angle-of-attack flight. This is primarily due to the physical limits this phenomenon imposes on aircraft and missiles at extreme flight conditions. Demands for more maneuverable air vehicles have pushed the limits of current computational fluid dynamics methods in the high Reynolds number regime. Simulation methods must be able to accurately describe the unsteady, vortical flowfields associated with fighter aircraft at Reynolds numbers more representative of full-scale vehicles. One of the goals of this paper is to demonstrate the ability of detached-eddy simulation, a hybrid Reynolds-averaged Navier-Stokes large-eddy simulation method, to accurately predict the vortical flow field over a slender delta wing at Reynolds numbers above 1 × 10~6. Although detached-eddy simulation successfully predicted the location of the vortex breakdown phenomenon in previous work, the goal of the current effort is to further validate the method with additional experimental data from the Office National d'Etudes et Recherches Aerospatiales, such as surface pressures and turbulent kinetic energy in the vortex core. The effect of grid density and an adaptive mesh refinement technique is also assessed through comparisons with the experiment. Detailed wind-tunnel geometry, such as tunnel walls and the sting mount system, are simulated and found to make a measurable difference. Finally, modeling the laminar-to-turbulent transition is demonstrated to have a significant effect on the vortical flowfield.
机译:对构成细长体周围旋涡流的旋涡结构的理解对于发展高度机动和高攻角飞行至关重要。这主要是由于这种现象在极端飞行条件下对飞机和导弹造成的物理限制。对更高机动性的飞行器的需求已在高雷诺数体系下推动了当前计算流体动力学方法的极限。仿真方法必须能够准确描述雷诺数下与战斗机相关的不稳定,涡旋流场,更能代表全尺寸飞行器。本文的目的之一是证明分离涡模拟的能力(一种混合的雷诺平均Navier-Stokes大涡模拟方法)能够准确地预测细长三角翼上雷诺数大于1×时的旋涡流场。 10〜6。尽管分离涡模拟成功地预测了先前工作中涡旋破坏现象的位置,但当前工作的目标是利用来自国家航天局和航空航天局的其他实验数据,例如表面压力和压力,进一步验证该方法。涡流核心中的湍动能。通过与实验的比较,还评估了网格密度和自适应网格细化技术的效果。模拟了详细的风洞几何形状,例如隧道墙和st架系统,发现它们之间存在可测量的差异。最后,模拟了层流向湍流过渡对涡流场的影响。

著录项

  • 来源
    《Journal of Aircraft》 |2009年第3期|746-755|共10页
  • 作者

    Scott Morton;

  • 作者单位

    U.S. Air Force Academy, Colorado Springs, Colorado 80840;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号