首页> 外文期刊>Journal of Aircraft >Structural Sizing, Aeroelastic Analysis, and Optimization in Aircraft Conceptual Design
【24h】

Structural Sizing, Aeroelastic Analysis, and Optimization in Aircraft Conceptual Design

机译:飞机概念设计中的结构尺寸,气弹性分析和优化

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a design tool based on computational methods for the aerostructural analysis and optimization of aircraft layouts at the conceptual design stage. The whole methodology is based upon the integration of geometry construction and aerodynamic and structural analysis codes that combine depictive, computational, analytical, and semiempirical methods validated in an aircraft design environment. The main module for structural sizing and numerical aeroelastic analysis, named NeoCASS (next-generation conceptual aerostructural sizing suite), is presented here. The numerical kernel handling the aerostructural interaction enables the creation of efficient low-order high-fidelity models that are particularly suitable within a multidisciplinary design optimization framework to drive the optimization tool in the most appropriate direction. This makes it possible to address adverse aeroelastic issues, such as divergence, control surface reversal, flutter, and increased drag at cruise speed due to structural deformation. All of these issues generally lead to considerable changes in the structural design, which in turn might pose limitations on the flight envelope or weight penalties. The late discovery of these types of issues may result in significant cost increases and, in some cases, it may lead to the termination of the project To overcome and remove these issues, the influence of structural deformation on flight and handling performances, of weight, and of design costs needs to be taken into account as early as possible in the design process.
机译:本文提出了一种基于计算方法的设计工具,用于在概念设计阶段对飞机布局进行航空结构分析和优化。整个方法基于几何构造,空气动力学和结构分析代码的集成,这些代码结合了在飞机设计环境中经过验证的描述性,计算性,分析性和半经验性方法。这里介绍了用于结构尺寸确定和数值气动弹性分析的主要模块,称为NeoCASS(下一代概念性航空结构尺寸确定套件)。处理航空结构相互作用的数值核使得能够创建有效的低阶高保真度模型,该模型特别适用于多学科设计优化框架,以在最合适的方向上驱动优化工具。这使得可以解决不利的气动弹性问题,例如发散,控制面反转,颤动以及由于结构变形而在巡航速度下增加的阻力。所有这些问题通常会导致结构设计发生重大变化,进而可能对飞行包线或重量损失造成限制。此类问题的最新发现可能会导致成本显着增加,并且在某些情况下,可能会导致项目终止。为了克服并消除这些问题,结构变形对飞行和操纵性能,重量,重量的影响,在设计过程中应尽早考虑设计成本。

著录项

  • 来源
    《Journal of Aircraft》 |2011年第6期|p.1840-1855|共16页
  • 作者单位

    FOI, Swedish Defence Research Agency, SE-164 90 Stockholm, Sweden;

    Politecnico di Milano, 20156 Milan, Italy;

    Politecnico di Milano, 20156 Milan, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号