...
首页> 外文期刊>Journal of Aircraft >Multifunctional Unmanned Aerial Vehicle Wing Spar for Low-Power Generation and Storage
【24h】

Multifunctional Unmanned Aerial Vehicle Wing Spar for Low-Power Generation and Storage

机译:用于低功率发电和存储的多功能无人机机翼翼梁

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the investigation of a multifunctional energy harvesting and energy-storage wing spar for unmanned aerial vehicles. Multifunctional material systems combine several functionalities into a single device in order to increase performance while limiting mass and volume. Multifunctional energy harvesting can be used to provide power to remote low-power sensors on unmanned aerial vehicles, where the added weight or volume of conventional harvesting designs can hinder flight performance. In this paper, a prototype self-charging wing spar containing embedded piezoelectric and battery elements is modeled, fabricated, and tested to evaluate its energy harvesting and storage performance. A coupled electromechanical model based on the assumed modes method is developed to predict the vibration response and voltage response of a cantilevered wing spar excited under harmonic base excitation. Experiments are performed on a representative self-charging wing spar, and the results are used to verify the electromechanical model. The power-generation performance of the self-charging wing spar is investigated in detail for harmonic excitation in clamped-free boundary conditions. Experiments are also conducted to demonstrate the ability of the wing spar to simultaneously harvest and store electrical energy in a multifunctional manner. It is shown that, for an input base acceleration level of ±0.25 g at 28.4 Hz at the base of the structure, 1.5 mW of regulated dc power is delivered from the piezoelectric layers to the thin-film battery, resulting in a stored capacity of 0.362 mAh in 1h.
机译:本文介绍了一种用于无人机的多功能能量收集和储能翼梁的研究。多功能材料系统将多种功能组合到单个设备中,以提高性能,同时限制质量和体积。多功能能量收集可用于为无人驾驶飞机上的远程低功率传感器提供动力,而传统能量收集设计的重量或体积会增加其飞行性能。在本文中,对包含嵌入式压电元件和电池元件的自充电翼梁进行了建模,制造和测试,以评估其能量收集和存储性能。建立了基于假定模态方法的耦合机电模型,以预测谐波基激励下悬臂翼梁的振动响应和电压响应。在具有代表性的自充电翼梁上进行了实验,并将结果用于验证机电模型。在无约束边界条件下,针对谐波激励,详细研究了自充电翼梁的发电性能。还进行了实验以证明翼梁以多功能方式同时收集和存储电能的能力。结果表明,对于在结构底部28.4 Hz处的输入基础加速度水平为±0.25 g的情况,将1.5 mW的调节直流功率从压电层传递到薄膜电池,导致存储容量为1小时内0.362毫安时。

著录项

  • 来源
    《Journal of Aircraft 》 |2012年第1期| p.292-301| 共10页
  • 作者单位

    Los Alamos National Laboratory, Los Alamos, New Mexico 87545 Engineering Institute, P.O. Box 1663, Mail Stop TOOL;

    Georgia Institute of Technology, Atlanta, Georgia 30332 George W. Woodruff School of Mechanical Engineering, 771 Ferst Drive, J. Erskine Love Manufacturing Building;

    University of Michigan, Ann Arbor, Michigan 48109 Department of Aerospace Engineering, 1320 Beal Avenue;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A: area; a_b: base acceleration; b: width; C: damping matrix; C_p: capacitance; et al;

    机译:A:面积;a_b:基本加速度;b:宽度;C:阻尼矩阵;C_p:电容;等;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号