首页> 外文期刊>Journal of Aeronautics Astronautics and Aviation >Effect of Inclination Angle of a Rhombic Enclosure on Natural Convection due to Differential Heating and Rayleigh-Bѐnard Configuration *
【24h】

Effect of Inclination Angle of a Rhombic Enclosure on Natural Convection due to Differential Heating and Rayleigh-Bѐnard Configuration *

机译:菱形外壳的倾斜角度对差热和瑞利-伯纳德构型引起的自然对流的影响*

获取原文
获取原文并翻译 | 示例
           

摘要

This article analyzes the detailed natural convection phenomena for anrhombic enclosure with differential heating and Rayleigh-Bѐnardnconfiguration. A bi-quadratic element has been used to calculate thendifferential fluxes in the Navier-Stokes equations. A fourth order artificialnviscosity was used to stabilize the numerical residue. The present numericalnsolution is performed over a wide range of parameters; 10n, Kuan-Lin Chen and Yu-Ta Hsun3≤Ra≤ 108,n150≤ϕ ≤1650 for differential heating and 103≤Ra≤ 106, 150≤ϕ ≤900 fornRayleigh-Bѐnard configuration. The analysis of the net convective heatntransfer across the mid-passage or the mid-height is used to identify thencontribution of vortex motion from conduction dominate to convectionndominate. The overshoots or undershoots of this net convective contributionnis highly related to inclination angle of the rhombic enclosure and also thenthermal boundary conditions. The compressibility effect slightly alters thenoverall performance and overshoots or undershoots of the net heat transfernby less than 1% value. Average Nusselt number distributions show that heatntransfer rate is maximum for ϕ=90o in differential heating case, while fornRayleigh-Bѐnard convection, the heat transfer rate is maximum for ϕ=75onexcept for ϕ=15o at Rayleigh number 103 where conduction heat transfer isndominate. There is a linearity between the average Nusselt number andnlog(Ra) for all the inclination angles for both cases. Results of the studynshows that the slope of the linearity is steeper for smaller or widerninclination angles when convective heat transfer is dominate i.e., at largernRayleigh number.
机译:本文分析了带有差热和瑞利-巴纳德配置的无斜外壳的详细自然对流现象。双二次元已用于计算Navier-Stokes方程中的微分通量。使用四阶人工粘度来稳定数字残留物。本数值解是在很宽的参数范围内执行的。 10n,陈宽林和Yu-TaHsun3≤Ra≤108,n150≤ϕ≤1650用于差速加热,103≤Ra≤106,150≤ϕ≤900用于Rayleigh-Bѐnard配置。通过对中通道或中高度的净对流传热的分析,可以确定涡旋运动从传导支配到对流支配的贡献。该净对流贡献的上冲或下冲与菱形外壳的倾角以及热边界条件高度相关。可压缩性会稍微改变整体性能,使净传热的上冲或下冲小于1%的值。平均Nusselt数分布表明,在差速加热情况下,ϕ = 90o时传热速率最大,而对于Rayleigh-Bѐnard对流,除了在传导性传热占主导地位的Rayleigh数为103时ϕ = 15o之外,ϕ = 75on时传热速率最大。在两种情况下,所有倾角的平均努塞尔数和nlog(Ra)之间存在线性关系。研究结果表明,当对流换热占主导地位时,即在较大的瑞利数下,线性度的斜率对于较小或较宽的倾角而言都较陡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号