首页> 外文期刊>Journal of acoustic emission >68 - Structural Health Monitoring of composite aerospace structures with Acoustic Emission
【24h】

68 - Structural Health Monitoring of composite aerospace structures with Acoustic Emission

机译:68-具有声发射的复合航空结构的结构健康监测

获取原文
获取原文并翻译 | 示例
       

摘要

While composite materials have many advantages due to their lightweight potential impact events orForeign Object Damage (FOD) is critical for composite and many other lightweight and thin aerospacestructures. FOD can lead to unscheduled maintenance in the cases of hail damage, tool drop, ramprash or even loss in the cases of tire debris (Concorde Accident July 25th, 2000) or insulation debris(Columbia Space Shuttle Feb. 1st, 2003). Impact damage reduces the static load capability and thefatigue life of a structure. The cost of an aircraft on ground is about 40 k$ per hour. Thus a decision onunscheduled inspection and repair or a return to flight must be taken fast and responsibly. Nondestructiveinspection combined with numerical analysis is the state of the art. A detailed numericalanalysis of predamaged parts may take several days or weeks. Novel fast Structural Health Monitoring(SHM) and predictive maintenance tools can support the necessary decision making process.Impact damage generates characteristic acoustic signals that can be detected and analyzed byacoustic emission systems during the event. This was investigated in the Clean Sky Program in theGreen Regioanl (GRA) platform* by Fraunhofer LBF (Laboratory for “Betriebsfestigkeit” – structuraldurability). A fast but simple analytical model was developed that can analyze certain extractedacoustic features. This model was trained with 50 composite plates clamped to simulate a stringer bayeach. The specimen were subjected to different impact energies and locations and correspondingAcoustic Emission (AE) features, damage sizes as well as the compression load after impact werederived from these tests. After this training the system could analyze impact events in near-real-timeand present estimations on impact energy levels, location, damage size, mechanical properties,delamination growth as well as the remaining fatigue life under a given load level.The project closed the loop from data acquisition with a commercial AE system, via the assessment ofthe structural properties based on sensor records to the prognosis of this structural health and itspresentation in near real-time after impact events. Unfortunately the high scatter of results regardingimpact testing as well as of the extracted acoustic signals affects the reliability of the system so far butwith approaches from big data methods AE may become an interesting sensor type for predictivemaintenance of sporadic failure types.
机译:尽管复合材料由于其轻量级的潜在冲击事件或异物损坏(FOD)而具有许多优势,但它对于复合材料以及许多其他轻量级和薄型航空航天结构至关重要。 FOD可能导致冰雹损坏,工具掉落,坡道 r nrash甚至在轮胎碎屑(2000年7月25日协和飞机事故)或绝缘碎屑 r n(哥伦比亚航天飞机2月)的情况下进行计划外维护(2003年1月1日)。冲击损坏会降低静载荷能力和结构的疲劳寿命。一架飞机在地面上的成本约为每小时40 k美元。因此,必须迅速和负责任地做出关于计划性检查和维修的决定或返回飞机。非破坏性 r n检查与数值分析相结合是最新技术。对受损零件进行详细的数值分析可能需要几天或几周的时间。新颖的快速结构健康监测 r n(SHM)和预测性维护工具可以支持必要的决策过程。 r n冲击损坏会生成特征性的声音信号,在事件发生期间,可以由 r n声发射系统进行检测和分析。这是由Fraunhofer LBF(“ Betriebsfestigkeit”实验室–结构 r 耐久性)在 r nGreen Regioanl(GRA)平台*中的“清洁天空”计划中进行调查的。开发了一种快速但简单的分析模型,可以分析某些提取的 r nacoustic特征。用夹紧的50个复合板训练该模型,以模拟纵梁间隔 n neach。从这些测试中获得了不同的冲击能量和位置以及相应的 n n声发射(AE)特征,损伤大小以及冲击后的压缩载荷。经过培训后,系统可以近乎实时地分析冲击事件 n n,并给出冲击能级,位置,损伤大小,力学性能, r 层间增长以及在给定负载下的剩余疲劳寿命的估计值级别。 r n该项目通过使用商用AE系统进行数据采集,通过评估基于传感器记录的结构特性,以预测该结构健康状况及其在近乎真实的状态中的呈现,从而封闭了循环事件发生后的时间。不幸的是,到目前为止,有关影响测试以及提取的声信号的大量结果影响了系统的可靠性,但是采用大数据方法的方法AE可能成为预测性的有趣传感器类型零星故障类型的维护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号