...
首页> 外文期刊>Joule >Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells
【24h】

Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells

机译:Monolayer Perovskite桥梁为高效的太阳能电池提供强量子点耦合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Solution-processed colloidal quantum dots (CQDs) are promising optoelectronic materials; however, CQD solids have, to date, exhibited either excellent transport properties but fusion among CQDs or limited transport when QDs are strongly passivated. Here, we report the growth of monolayer perovskite bridges among quantum dots and show that this enables the union of surface passivation with improved charge transport. We grow the perovskite layer after forming the CQD solid rather than introducing perovskite precursors into the quantum dot solution: the monolayer of perovskite increases interdot coupling and decreases the distance over which carriers must tunnel. As a result, we double the diffusion length relative to reference CQD solids and report solar cells that achieve a stabilized power conversion efficiency (PCE) of 13.8%, a record among Pb chalcogenide CQD solar cells.
机译:溶液处理的胶体量子点(CQDS)是有前途的光电材料;然而,迄今为止,CQD固体具有优异的运输特性,但是当QD被强烈钝化时CQDS或有限的运输之间的融合。在这里,我们报告了量子点之间单层佩罗夫斯库特桥梁的生长,并表明这使得这使得表面钝化结合具有改进的电荷运输。在形成CQD固体之后,我们在钙钛矿层上生长钙钛矿层,而不是将钙钛矿前体引入量子点溶液:钙钛矿的单层增加interdot耦合并降低载体必须隧道的距离。结果,我们相对于参考CQD固体的扩散长度与达到13.8%的稳定功率转换效率(PCE)的报告太阳能电池的分散长度增加了13.8%,是Pb硫属元素化物CQD太阳能电池的记录。

著录项

  • 来源
    《Joule》 |2020年第7期|1542-1556|共15页
  • 作者单位

    Department of Electrical and Computer Engineering University of Toronto;

    Department of Electrical and Computer Engineering University of Toronto;

    Waterloo Institute for Nanotechnology University of Waterloo;

    Department of Electrical and Computer Engineering University of Toronto;

    Department of Electrical and Computer Engineering University of Toronto;

    X-ray Science Division Advanced Photon Source Argonne National Laboratory;

    X-ray Science Division Advanced Photon Source Argonne National Laboratory;

    Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST)|KAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST);

    Department of Electrical and Computer Engineering University of Toronto;

    Department of Electrical and Computer Engineering University of Toronto;

    Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST);

    Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST);

    Department of Electrical and Computer Engineering University of Toronto;

    Department of Electrical and Computer Engineering University of Toronto;

    Department of Electrical and Computer Engineering University of Toronto;

    Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST)|KAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST);

    Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST);

    Waterloo Institute for Nanotechnology University of Waterloo;

    Department of Electrical and Computer Engineering University of Toronto;

    Department of Electrical and Computer Engineering University of Toronto;

    Department of Electrical and Computer Engineering University of Toronto;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    quantum dots; monolayer perovskite bridges; surface passivation; carrier transport; solar cells;

    机译:量子点;单层钙钛矿桥梁;表面钝化;载流子运输;太阳能电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号