首页> 外文期刊>Joule >Enabling Flexible All-Perovskite Tandem Solar Cells
【24h】

Enabling Flexible All-Perovskite Tandem Solar Cells

机译:实现灵活的全钙钛矿串联太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

Multijunction all-perovskite solar cells offer a route toward efficiencies of lll-V materials at low cost by combining the advantages of low thermalization loss in multijunction architectures with the beneficial properties of perovskites— namely, low processing cost, high-throughput fabrication, and compatibility with flexible substrates. However, there are two main challenges for enabling high-efficiency tandems: (1) design of a recombination layer to efficiently combine two perovskite subcells while also preventing bottom cell damage during top cell processing and (2) achieving high open-circuit voltage of the wide-gap subcell. Herein, we overcome both of these challenges. First, we demonstrate a nucleation layer consisting of an ultra-thin polymer with nucleophilic hydroxyl and amine functional groups for nucleating a conformal, low-conductivity aluminum zinc oxide layer by atomic layer deposition (ALD). This method enables ALD-grown recombination layers that reduce shunting as well as solvent degradation from solution processing on top of existing perovskite active layers. Next, we demonstrate a band-gap tuning strategy based on A-site cations of mismatched size (dimethylammonium and cesium) to enable a 1.7 eV perovskite with high, stable voltages. By combining these advances, we fabricate two-terminal all-perovskite tandem solar cells with 23.1% power conversion efficiency on rigid substrates and 21.3% on flexible plastic substrates.
机译:多结全钙钛矿太阳能电池通过将多结结构中的低热损失与钙钛矿的有益特性(即低加工成本,高通量制造和兼容性)相结合,以低成本向III-V材料效率提供了一条途径。具有柔性基材。但是,要实现高效的鞣制,存在两个主要挑战:(1)重组层的设计,以有效地组合两个钙钛矿子电池,同时还防止在顶部电池加工过程中对底部电池造成损坏;(2)实现电池的高开路电压宽间隙子电池。在此,我们克服了这两个挑战。首先,我们展示了一个由具有亲核羟基和胺官能团的超薄聚合物组成的成核层,用于通过原子层沉积(ALD)来形化共形,低电导率的铝氧化锌层。这种方法可实现ALD增长的重组层,从而减少在现有钙钛矿活性层上进行溶液处理时的分流和溶剂降解。接下来,我们展示一种基于大小不匹配的A位阳离子(二甲基铵和铯)的带隙调谐策略,以实现具有高,稳定电压的1.7 eV钙钛矿。通过结合这些进展,我们制造出了两端子全钙钛矿串联太阳能电池,在刚性基板上的功率转换效率为23.1%,在柔性塑料基板上的功率转换效率为21.3%。

著录项

  • 来源
    《Joule》 |2019年第9期|2193-2204|共12页
  • 作者单位

    Center for Materials Science National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA These authors contributed equally;

    Center for Chemistry and Nanoscience National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA These authors contributed equally;

    Center for Chemistry and Nanoscience National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA Swift Solar Inc. Golden Hills Road Golden CO 80401 USA These authors contributed equally;

    Center for Chemistry and Nanoscience National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA Department of Materials Science and Engineering Stanford University 476 Lomita Mall Stanford CA 94305 USA;

    Center for Chemistry and Nanoscience National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA;

    Materials Science and Engineering Program University of Colorado Boulder CO 80309 USA;

    Center for Materials Science National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA;

    Chemical and Biological Engineering University of Colorado Boulder CO 80309 USA;

    Center for Materials Science National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA Lead Contact;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号