...
首页> 外文期刊>Journal of Chemical Physics >Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs
【24h】

Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs

机译:具有基序和激发态的按比例缩放的反向旋转CC2,具有四阶缩放计算成本

获取原文
获取原文并翻译 | 示例

摘要

An implementation of scaled opposite-spin CC2 (SOS-CC2) for ground and excited state energies is presented that requires only fourth order scaling computational costs. The SOS-CC2 method yields results with an accuracy comparable to the unscaled method. Furthermore the time-determining fifth order scaling steps in the algorithm can be replaced by only fourth order scaling computational costs using a “resolution of the identity” approximation for the electron repulsion integrals and a Laplace transformation of the orbital energy denominators. This leads to a significant reduction of computational costs especially for large systems. Timings for ground and excited state calculations are shown and the error of the Laplace transformation is investigated. An application to a chlorophyll molecule with 134 atoms results in a speed-up by a factor of five and demonstrates how the new implementation extends the applicability of the method. A SOS variant of the algebraic diagrammatic construction through second order ADC(2), which arises from a simplification of the SOS-CC2 model, is also presented. The SOS-ADC(2) model is a cost-efficient alternative in particular for future extensions to spectral intensities and excited state structure optimizations. © 2011 American Institute of Physics Article Outline INTRODUCTION THEORY Scaled opposite spin CC2 Excited states Simplified approaches: SOS-CIS(D ∞ ) and SOS-ADC(2) IMPLEMENTATION Prerequisites Cluster equations Excited states RESULTS Laplace error Timings Accuracy of SOS-CC2 and SOS-ADC(2) Applications SUMMARY
机译:提出了针对基态和激发态能量的按比例缩放的反向旋转CC2(SOS-CC2)的实现,该实现仅需要四阶缩放计算成本。 SOS-CC2方法产生的结果的准确性可与无标度方法相媲美。此外,使用电子排斥积分的“同一性的分辨率”近似值和轨道能量分母的拉普拉斯变换,可以仅用四阶缩放计算量来代替算法中确定时间的五阶缩放步骤。这导致大大降低了计算成本,尤其是对于大型系统。给出了基态和激发态计算的时序,并研究了拉普拉斯变换的误差。对具有134个原子的叶绿素分子的应用导致速度提高了五倍,并证明了新的实现方式如何扩展了该方法的适用性。还介绍了通过简化SOS-CC2模型产生的通过二阶ADC(2)进行代数图解构造的SOS变体。 SOS-ADC(2)模型是一种经济高效的替代方案,特别是对于光谱强度和激发态结构优化的未来扩展。 ©2011美国物理研究所文章大纲引言理论反向旋转CC2激发态简化方法:SOS-CIS(D∞)和SOS-ADC(2)实现先决条件聚类方程式激发态结果Laplace误差时序SOS的准确性-CC2和SOS-ADC(2)应用摘要

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号