首页> 外文期刊>ISIJ international >Microstructure and Deformation Behavior of High Nitrogen Duplex Stainless Steels
【24h】

Microstructure and Deformation Behavior of High Nitrogen Duplex Stainless Steels

机译:高氮双相不锈钢的组织和变形行为

获取原文
获取原文并翻译 | 示例
       

摘要

The deformation of duplex structures in general and duplex stainless steels (DSS) in particular is very complex. The existence of the massive second phase leads to numerous unexpected features, i.e. the microstructure is the most decisive influence parameter on the deformation behavior of duplex structures. In the case of DSS additionally the chemical composition has to be taken into account. With increasing rolling deformation at room temperature several deformation mechanisms occur, e.g. shear relaxation, twinning of austenite, deformation induced martensitic transformation of the austenitic phase, crack formation (and crack healing accompanied by the refinement of the microstructure) and dynamic recovery. In α/γ DSS additionally the phase boundaries (PB) are obstacles for deformation. Therefore, here large deformation zones were built up during deformation which contribute to the complex deformation behavior. Since nitrogen reduces the SFE and, thereby, hardens the austenitic phase and promotes planar slip which is not homogeneously distributed in the austenitic grains but localized, ferrite becomes the more ductile phase in DSS. Furthermore, as a very strong austenite stabilizing element, N causes the change of the matrix phase from ferrite to austenite and leads to the ductile to brittle transition of austenite which also influences the deformation behavior. It occurred that there are equal deformation modes like the hindrance of shear band formation, shear band cracking and "selective phase boundary sliding", which are obviously valid for all duplex structures, and other ones, due to the nitrogen content (e.g. brittleness) or the existence of the second phase (e.g. increased strain hardening rate).
机译:普通和双相不锈钢(DSS)中双相组织的变形非常复杂。大量第二相的存在会导致许多出乎意料的特征,即微观结构是双相结构变形行为的最决定性的影响参数。在DSS的情况下,还必须考虑化学成分。随着室温下轧制变形的增加,出现了几种变形机理,例如。剪切弛豫,奥氏体孪晶,变形引起奥氏体相的马氏体相变,裂纹形成(以及伴随微观组织细化的裂纹愈合)和动态恢复。此外,在α/γDSS中,相位边界(PB)是变形的障碍。因此,此处在变形过程中建立了较大的变形区域,这导致了复杂的变形行为。由于氮降低了SFE,从而硬化了奥氏体相并促进了平面滑移,该滑移不是均匀分布在奥氏体晶粒中而是局部分布,因此铁素体在DSS中变得更加易延展。此外,作为非常强的奥氏体稳定元素,N引起基体相从铁素体到奥氏体的变化,并导致奥氏体的韧性到脆性转变,这也影响了变形行为。发生了相同的变形模式,例如剪切带形成的障碍,剪切带破裂和“选择性相边界滑动”,这显然对所有双相结构都有效,而其他由于氮含量(例如脆性)而有效。第二阶段的存在(例如,应变硬化率提高)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号