首页> 外文期刊>ISIJ international >Hydrodynamic And Mathematical Simulations Of Flow Field And Temperature Profile In An Asymmetrical T-type Single-strand Continuous Casting Tundish
【24h】

Hydrodynamic And Mathematical Simulations Of Flow Field And Temperature Profile In An Asymmetrical T-type Single-strand Continuous Casting Tundish

机译:不对称T型单股连铸中间包内流场和温度分布的流体力学和数学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

To further remove mini-size nonmetallic inclusions and improve surface quality of stainless steel slab at No. 2 Stee making Plant of Shanxi Taigang Stainless Steel Company Limited, the flow field and temperature profile of molten stainless steel in an asymmetrical T-type single-strand continuous casting tundish with a capacity of 18-20 tons have been investigated by both hydrodynamic and mathematical simulations. The influences of height for low-wall of turbulence inhibitor, dam height, weir depth, distance between dam and weir, submerged depth of ladle shroud and casting speed on flow field in the tundish have been studied in a 1 :3 reduced scale hydrodynamic model. The streamlines, velocity vector fields and temperature profiles are also mathematically simulated.rnThe hydrodynamic modelling results indicate that height for low-wall of turbulence inhibitor, dam height and weir depth are three important structural parameters on flow field of molten stainless steel in the tundish. The optimization of the three parameters can improve dispersed plug zone and reduce dead zone effectively. Changing casting speed can improve turbulent flow, and thus reduce dead zone of molten stainless steel in the tundish. As a result, five groups of optimized structural parameters of the tundish have been recommended, which can reduce volume fraction of dead zone down to 15-30% and increase volume fraction of dispersed plug zone to more than 20%. In addition, it is verified that the optimized groups of structural parameters of the tundish can maintain their advantage at different casting speeds in a narrow range.rnThe mathematical modelling results suggest that heat losses around the tundish must be considered in order to accurately simulate the streamline, velocity vector field and temperature profile. The calculated temperature drop of molten stainless steel between inlet and outlet of the tundish is about 4.4 K; the maximum temperature drop in the whole tundish is about 10 K. The modification of flow filed by changing structural parameters of the tundish can slightly affect temperature profile of molten stainless steel in the tundish.
机译:为了进一步去除微小的非金属夹杂物并改善山西太钢不锈钢有限公司二号制钢厂的不锈钢板的表面质量,非对称T型单股钢水的流场和温度曲线通过流体动力学和数学模拟研究了容量为18-20吨的连铸中间包。在1:3缩小比例的水动力模型中研究了湍流抑制剂低壁高度,坝高,堰深度,坝与堰之间的距离,钢包罩的浸入深度和浇铸速度对中间包内流场的影响。 。对流线,速度矢量场和温度曲线进行了数学模拟。流体动力学建模结果表明,湍流抑制剂低壁高度,坝高和堰深度是中间包中熔融不锈钢流场的三个重要结构参数。这三个参数的优化可以改善分散的堵塞区并有效地减少死区。改变铸造速度可以改善湍流,从而减少中间包中熔融不锈钢的死区。结果,推荐了五组优化的中间包结构参数,它们可以将死区的体积分数降低至15-30%,并将分散的堵塞区的体积分数提高至20%以上。此外,已证明优化的中间包结构参数组可以在窄范围内的不同铸造速度下保持其优势。数学模型结果表明,必须考虑中间包周围的热损失才能准确模拟流线型,速度矢量场和温度曲线。计算得出的中间包入口和出口之间的熔融不锈钢温度降约为4.4 K;整个中间包中的最大温度下降约为10K。通过改变中间包的结构参数来改变流场会稍微影响中间包中熔融不锈钢的温度分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号