首页> 外文期刊>ISIJ international >Stress Exponent of Minimum Creep Rate and Activation Energy of Creep for Oxide Dispersion-strengthened Nickel-based Superalloy MA754
【24h】

Stress Exponent of Minimum Creep Rate and Activation Energy of Creep for Oxide Dispersion-strengthened Nickel-based Superalloy MA754

机译:氧化物弥散强化镍基高温合金MA754的最小蠕变速率和蠕变活化能的应力指数

获取原文
获取原文并翻译 | 示例
           

摘要

The stress exponent of the minimum creep rate, n, and the activation energy of creep, Q_c, were obtained for the oxide dispersion-strengthened nickel-based superalloy MA754 by conducting creep tests at 1 223-1 273 K in the stress range of 130-190 MPa. The values of n and Q_c in MA754 were determined to be 26 and 962 kJ/mol, respectively. The causes of these high values were determined by measuring the internal stress, σ_i, using the strain dip test. The ratio of σ_i to applied stress, σ_a, was very high at lower stresses, while at higher stresses, σ_i reached its saturated value with increasing stress. In this stress range, the ratio of σ_i to σ_a decreased drastically with increasing stress, which reflected the large increase in creep rate. Such a large increase in creep rate with increasing applied stress led to an unpredictably higher value of n. With increasing temperature, the saturated σ_i decreased, which resulted in a relatively large creep rate. The larger creep rate at high temperatures led to a large value of σ_c. In addition, the dislocation density, p, of the interrupted creep specimens at the time of the minimum creep rate increased with increasing stress and reached the saturated value. This change in p with stress must be reflected in a large change in n and Q_c through a change in σ_i.
机译:通过在1 223-1 273 K下在130的应力范围内进行蠕变试验,获得了氧化物弥散强化的镍基高温合金MA754的最小蠕变速率n的应力指数和蠕变的活化能Q_c。 -190兆帕。 MA754中的n和Q_c值分别确定为26和962 kJ / mol。这些高值的原因是通过使用应变浸入测试测量内部应力σ_i来确定的。 σ_i与施加应力的比率σ_a在较低应力下非常高,而在较高应力下,σ_i随着应力的增加达到其饱和值。在此应力范围内,σ_i与σ_a之比随着应力的增加而急剧下降,这反映出蠕变速率的大幅增加。随着施加应力的增加蠕变率如此大的提高导致n的值异常高。随着温度的升高,饱和σ_i减小,这导致相对较大的蠕变速率。高温下较大的蠕变率导致σ_c较大。另外,最小蠕变速率时,中断的蠕变试样的位错密度p随着应力的增加而增加,并达到饱和值。 p随应力的变化必须通过σ_i的变化反映在n和Q_c的较大变化中。

著录项

  • 来源
    《ISIJ international》 |2012年第1期|p.140-146|共7页
  • 作者单位

    Department of Mechanical Systems Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa,239-8686 Japan;

    The Japan Maritime Self-Defense Force, 1-5 Honmura-cho, Ichigaya, Shinjuku-ku, Tokyo, 162-8803 Japan;

    Department of Mechanical Systems Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa,239-8686 Japan;

    Department of Mechanical Systems Engineering, Daido Steel Co., Ltd., 2-30 Daido-cho, Minami-ku, Nagoya,Aichi, 457-8545 Japan;

    Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ODS; stress exponent of the minimum creep rate; activation energy of creep; internal stress; effective stress; dislocation substructure;

    机译:消耗臭氧层物质;最小蠕变率的应力指数;蠕变的活化能;内部压力有效压力位错子结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号