首页> 外文期刊>Ironmaking & Steelmaking >Effect of hot reducing gas (HRG) injection on blast furnace operational parameters: theoretical investigation
【24h】

Effect of hot reducing gas (HRG) injection on blast furnace operational parameters: theoretical investigation

机译:热还原气体(HRG)注入对高炉操作参数的影响:理论研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The injection rate of fossil fuels in the blast furnace is limited because of a drop in the flame temperature in the raceway as well as problems in deadman region and the cohesive zone owing to the unburnt char. An alternative option for coke saving, a clean deadman as well as increase in blast furnace productivity is injection of hot reducing gases (HRG) which are produced by low grade coal gasification or top gas recycling after CO2 and N2 removal. Calculations using a mathematical model show that HRG injection at higher temperature is desirable. Hot reducing gas injection is possible up to 300 Nm3 thm-1, above which the top gas temperature shoots up beyond practical limits. Furthermore, it also shows that if the flame temperature is maintained constant by varying steam and oxygen injection, the productivity is increased by 16% and coke rate is reduced by 84 kg thm-1 with the replacement ratio of 1˙4 kg coke/kg gasified coal at 300 Nm3/thm of HRG injection. It was also observed that the complete replacement of pulverised coal (PC) injection with HRG injection is more effective over the coinjection of PC and HRG in terms of coke rate saving. However, oxygen enrichment is possible up to 75% with the coinjection of HRG and PC, with a resultant of rise in productivity. Injection of HRG in the form of top gas (blast furnace gas) is more effective over the injection of HRG generated from coal gasification. The productivity is increased by 25% and coke rate is reduced by 83 kg thm-1 with the replacement ratio of 1˙7 kg coke/kg HRG at 250 Nm3 thm-1 of HRG injected from top gas.
机译:高炉中化石燃料的喷射速率受到限制,这是因为滚道中的火焰温度下降,以及由于未燃烧的焦炭而导致的亡命区域和粘结区域出现问题。节省焦炭,清洁人命以及提高高炉生产率的另一种选择是注入热还原气体(HRG),这些气体是通过低级煤气化或去除CO2和N2后回收顶部气体而产生的。使用数学模型进行的计算表明,希望在较高温度下注入HRG。热还原气体的注入量最高可达300 Nm3 thm-1,在此之上,最高气体温度会超出实际极限。此外,它还表明,如果通过改变蒸汽和氧气的注入使火焰温度保持恒定,则生产率提高了16%,焦炭速率降低了84 kg thm-1,置换率为1×4 kg焦炭/ kg。每小时以300 Nm3 / thm的HRG注入气化煤。还观察到,就节省焦炭率而言,用HRG喷射完全替代粉煤(PC)喷射比PC和HRG的共同喷射更有效。然而,通过HRG和PC的共同注入,氧气富集可能达到75%,从而提高了生产率。顶部气体(高炉煤气)形式的HRG注入比煤气化产生的HRG注入更有效。从顶部气体注入的HRG为250 Nm3 thm-1时,置换率为1×7 kg焦炭/ kg HRG,生产率提高了25%,焦炭速率降低了83 kg thm-1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号