...
首页> 外文期刊>International journal for uncertainty quantifications >STATISTICAL STRENGTH OF HIERARCHICAL CARBON NANOTUBE COMPOSITES
【24h】

STATISTICAL STRENGTH OF HIERARCHICAL CARBON NANOTUBE COMPOSITES

机译:多层碳纳米管复合材料的统计强度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In modeling and simulation of material failure, a major challenge lies in the computation of stress redistributions during the stochastic propagation of localized failures. In this study, an n~(th)-order generalized local load sharing (GLLS) model is introduced to account for the complexity of such local interactions in an efficient way. The rule is flexible, covering a wide range of load sharing mechanisms between the equal load sharing and local load sharing types. A Monte Carlo simulation model employing various orders of this GLLS rule is used to study the effect of such load redistributions on the failure of a micron-scale carbon nanotube (CNT) fiber. These CNT fibers exhibit a hierarchical structure. At the lowest length scale are single- or multi-walled CNTs with nanoscale diameters (e.g., 1-10 nm), which are aligned and clustered to form small bundles at the next higher length scale (15-60 nm in diameter). Thousands of these CNT bundles aggregate and align to create CNT fibers with micron-scale diameters. The results of this study indicate that the mean strength of the CNT fibers reduces by approximately two-thirds of an order of magnitude when up-scaling from an individual CNT to a CNT fiber. This dramatic strength reduction occurs at three different stages of the up-scaling process: (1) from individual CNTs of length It to CNT bundles of the same length; (2) from a CNT bundle of length It to a CNT bundle of length l_b(l_b=10l_t); and (3) from CNT bundles of length l_b to CNT fibers of the same length. The specific strength reductions during these three stages are provided in the paper. The computed fiber strengths are in the same general range as corresponding experimental values reported in the literature. The ability of the GLLS model to efficiently account for different mechanisms of load sharing, in combination with the multi-stage up-scaling Monte Carlo simulation approach, is expected to benefit the design and optimization of robust structural composites built up from carbon nanotubes.
机译:在材料故障的建模和仿真中,主要挑战在于局部故障随机传播过程中的应力重新分布计算。在这项研究中,引入了n阶广义局部负载分担(GLLS)模型,以有效地解决此类局部交互的复杂性。该规则非常灵活,涵盖了相等的负载分担类型和本地负载分担类型之间的广泛负载分担机制。使用该GLLS规则的不同阶数的蒙特卡洛模拟模型用于研究这种载荷重新分布对微米级碳纳米管(CNT)纤维失效的影响。这些CNT纤维表现出分层结构。在最小长度尺度上是具有纳米尺度直径(例如1-10nm)的单壁或多壁CNT,其被排列并成簇以在下一更高长度尺度(直径15-60nm)下形成小束。成千上万的这些CNT束聚集并对齐,以形成具有微米级直径的CNT纤维。这项研究的结果表明,当从单个CNT放大到CNT纤维时,CNT纤维的平均强度降低了大约三分之二的数量级。这种急剧的强度降低发生在放大过程的三个不同阶段:(1)从长度为It的单个CNT到长度相同的CNT束; (2)从长度为It的CNT束到长度为l_b(l_b = 10l_t)的CNT束; (3)从长度为l_b的CNT束到相同长度的CNT纤维。本文提供了这三个阶段的特定强度降低。所计算的纤维强度与文献中报道的相应实验值在相同的一般范围内。 GLLS模型能够有效解决负载分担的不同机制的能力,再结合多阶段按比例放大的蒙特卡洛模拟方法,有望从碳纳米管构建的坚固结构复合材料的设计和优化中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号