首页> 外文期刊>International journal for uncertainty quantifications >HIERARCHICAL SPARSE BAYESIAN LEARNING FOR STRUCTURAL HEALTH MONITORING WITH INCOMPLETE MODAL DATA
【24h】

HIERARCHICAL SPARSE BAYESIAN LEARNING FOR STRUCTURAL HEALTH MONITORING WITH INCOMPLETE MODAL DATA

机译:模态数据不完整的分层稀疏贝叶斯学习用于结构健康监测

获取原文
获取原文并翻译 | 示例
           

摘要

For civil structures, structural damage due to severe loading events such as earthquakes, or due to long-term environmental degradation, usually occurs in localized areas of a structure. A new sparse Bayesian probabilistic framework for computing the probability of localized stiffness reductions induced by damage is presented that uses noisy incomplete modal data from before and after possible damage. This new approach employs system modal parameters of the structure as extra variables for Bayesian model updating with incomplete modal data. A specific hierarchical Bayesian model is constructed that promotes spatial sparseness in the inferred stiffness reductions in a way that is consistent with the Bayesian Ockham razor. To obtain the most plausible model of sparse stiffness reductions together with its uncertainty within a specified class of models, the method employs an optimization scheme that iterates among all uncertain parameters, including the hierarchical hyper-parameters. The approach has four important benefits: (1) it infers spatially sparse stiffness changes based on the identified modal parameters; (2) the uncertainty in the inferred stiffness reductions is quantified; (3) no matching of model and experimental modes is needed, and (4) solving the nonlinear eigenvalue problem of a structural model is not required. The proposed method is applied to two previously studied examples using simulated data: a ten-story shear-building and the three-dimensional braced-frame model from the Phase II Simulated Benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring. The results show that the occurrence of false-positive and false-negative damage detection is clearly reduced in the presence of modeling error (differences between the real structural behavior and the model of it). Furthermore, the identified most probable stiffness loss ratios are close to their actual values.
机译:对于民用结构,由于严重的负载事件(例如地震)或由于长期的环境退化而导致的结构损坏通常发生在结构的局部区域。提出了一种新的稀疏贝叶斯概率框架,该框架使用可能的损坏前后的嘈杂不完整模态数据来计算损坏引起的局部刚度降低的可能性。这种新方法采用结构的系统模态参数作为不完整模态数据的贝叶斯模型更新的额外变量。构建了特定的分层贝叶斯模型,该模型以与贝叶斯Ockham剃刀一致的方式提高了推断的刚度降低中的空间稀疏性。为了获得最合理的稀疏刚度降低模型及其在指定模型类别中的不确定性,该方法采用了一种优化方案,该方案在所有不确定参数(包括分层超参数)之间进行迭代。该方法具有四个重要的好处:(1)根据识别出的模态参数推断空间稀疏的刚度变化; (2)量化推断的刚度降低的不确定性; (3)不需要模型和实验模式的匹配,并且(4)不需要解决结构模型的非线性特征值问题。拟议的方法已应用到两个以前使用模拟数据进行研究的示例中:一个十层的剪切构建和由IASC-ASCE结构健康监测任务组赞助的“ II期模拟基准”问题中的三维支撑框架模型。结果表明,在存在模型错误(真实结构行为与其模型之间的差异)的情况下,明显减少了假阳性和假阴性损坏检测的发生。此外,确定的最可能的刚度损失比接近其实际值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号