...
首页> 外文期刊>JSME International Journal. Series A, Solid mechanics and material engineering >Mechanical Properties of Amorphous Metal with Dispersed Nanocrystalline Particles: Molecular Dynamics Study on Crystal Volume Fraction and Size Effects
【24h】

Mechanical Properties of Amorphous Metal with Dispersed Nanocrystalline Particles: Molecular Dynamics Study on Crystal Volume Fraction and Size Effects

机译:具有分散的纳米晶体颗粒的非晶态金属的机械性能:晶体动力学分数和尺寸效应的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Large-scale molecular dynamics simulations of tensile deformation of amorphous metals with nanocrystalline particles were performed in order to clarify the effects of particle size and crystal volume fraction on the deformation property and the strength. It was clarified that the size effects of the particle are very small, whereas the influences of the crystal volume fraction are large. Young's modulus and the flow stress become large as the crystal volume fraction increases. Even after the yielding of the amorphous phase, the stress of the crystal phase still continues to increase. Thus, the flow stress of the composite increases after yielding, which prevents plastic localization and improves the ductility. When the crystal volume fraction is small, the stress distribution is homogeneous in the particle including near the amorphous-crystal interface. Therefore, possibility of deformation is small, and inside-particle plastic deformation is negligible. When the crystal volume fraction is high, the particle undergoes plastic deformation even with small global deformation. After the yielding of the crystal particle, the flow stress decreases because defects are introduced into the crystal. It is expected that there is an ideal crystal volume fraction that gives the maximum ductility. A Lennard-Jones potential modified to enforce the continuity at the cut-off distance was used as an interatomic potential. The potential parameters were defined based on Inoue's three basic principles.
机译:为了阐明非晶态金属与纳米晶体颗粒的拉伸变形的大规模分子动力学模拟,以阐明粒径和晶体体积分数对变形性能和强度的影响。明确了颗粒的尺寸影响很小,而晶体体积分数的影响很大。杨氏模量和流动应力随着晶体体积分数的增加而变大。即使在屈服非晶相之后,晶相的应力仍然继续增加。因此,复合材料的流动应力在屈服后增加,这防止了塑性定位并改善了延展性。当晶体体积分数小时,应力分布在包括非晶-晶体界面附近的颗粒中是均匀的。因此,变形的可能性小,并且内部颗粒塑性变形可以忽略不计。当晶体体积分数高时,即使整体变形较小,颗粒也经历塑性变形。在晶体颗粒屈服之后,由于缺陷被引入到晶体中,所以流应力减小。可以预期,存在一个理想的晶体体积分数,可以提供最大的延展性。将Lennard-Jones电势修改为在截止距离处强制实现连续性被用作原子间电势。潜在的参数是根据井上的三项基本原则定义的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号