首页> 外文期刊>International journal of remote sensing >Estimation of winter-wheat above-ground biomass using the wavelet analysis of unmanned aerial vehicle-based digital images and hyperspectral crop canopy images
【24h】

Estimation of winter-wheat above-ground biomass using the wavelet analysis of unmanned aerial vehicle-based digital images and hyperspectral crop canopy images

机译:使用无人机基于空中车辆的数字图像和高光谱作物冠层图像的小波分析估算冬小麦上面的地面生物质

获取原文
获取原文并翻译 | 示例
       

摘要

The crop above-ground biomass (AGB) is critically important for monitoring crop growth, and its accurate estimation can be used by agricultural managers to improve farmland management and to predict crop grain yield. Many studies have shown that models for the estimation of AGB for multiple crop growth stages based on optical remote sensing spectral indices (SIs) often underestimate the crop AGB in later growth stages due to saturation problems. The purpose of this study was to estimate winter-wheat AGB using (i) high-frequency information obtained from the image wavelet decomposition (IWD) of unmanned aerial vehicle (UAV)-based digital images of winter-wheat canopy (i.e. high-frequency IWD information), and (ii) variables obtained from the continuous wavelet transform (CWT) of hyperspectral images of winter-wheat canopy (i.e. hyperspectral CWT variables). Digital and hyperspectral images were acquired using a digital camera and an imaging spectrometer, both mounted on a UAV. Unlike optical SIs, high-frequency IWD information and hyperspectral CWT variables may not be limited by saturation problems for high winter-wheat canopy cover. Our results indicate that high-frequency IWD information and hyperspectral CWT variables both increase (decrease) with increasing winter-wheat AGB. A multiple linear stepwise regression technique was used to analyse the performance of (1) SIs, (2) CWT, (3) IWD, (4) SIs + CWT, (5) SIs + IWD, (6) CWT + IWD, and (7) SIs + CWT + IWD, for estimating AGB. Our results indicate that: (i) the method based only on optical SIs may not support the estimation of winter-wheat AGB for multiple growth stages (SIs: coefficient of determination (R (2)) = 0.62, mean absolute error (MAE) = 1.30 t ha(-1), root-mean-square error (RMSE) = 1.63 t ha(-1)); (ii) the combined use of the IWD of digital images of winter-wheat canopy and the CWT of hyperspectral images of crop canopy can support the estimation of winter-wheat AGB for multiple growth stages (CWT + IWD: R (2) = 0.85, MAE = 0.79 t ha(-1), RMSE = 1.01 t ha(-1)), including later growth stages; and (iii) the combined use of SIs and the IWD of digital images of winter-wheat canopy can improve the estimation accuracy of winter-wheat AGB (SIs + IWD: R (2) = 0.80, MAE = 0.93 t ha(-1), RMSE = 1.22 t ha(-1)), which may indicate that imaging spectrometers and cheap digital cameras have distinct advantages and can both be used to obtain AGB estimates using different methods. This work provides a new perspective on the use of high-frequency IWD information, hyperspectral CWT variables, and their combination to estimate AGB for multiple crop growth stages.
机译:地上地上生物量(AGB)的作物对于监测作物生长至关重要,并且其准确的估计可以由农业管理者使用,以改善农田管理并预测作物粮食产量。许多研究表明,基于光学遥感光谱索引(SIS)的多种作物生长阶段估计AGB的模型通常由于饱和问题而低估了后期生长阶段的作物AGB。本研究的目的是使用(i)从无人行的空中车辆(UAV)的图像小波分解(IWD)获得的高频信息来估计冬小麦AGB(IAV)的冬小麦冠层(即高频) IWD信息),(II)从冬小麦冠层的高光谱图像(即高光谱CWT变量)的连续小波变换(CWT)获得的变量。使用数码相机和成像光谱仪获取数字和高光谱图像,两者都安装在UAV上。与光学SIS不同,高频IWD信息和高光谱CWT变量可能不受高冬小麦遮阳篷覆盖的饱和问题的限制。我们的结果表明,随着冬小麦AGB的增加,高频IWD信息和高光谱CWT变量增加(减少)。使用多线性逐步回归技术分析(1)SIS,(2)CWT,(3)IWD,(4)SIS + CWT,(5)SIS + IWD,(6)CWT + IWD,以及(7)SIS + CWT + IWD,用于估算AGB。我们的结果表明:(i)仅基于光学SIS的方法可能不支持多个生长阶段的冬小麦AGB的估计(SIS:测定系数(R(2))= 0.62,平均误差(MAE) = 1.30 t ha(-1),根均方误差(RMSE)= 1.63 t ha(-1)); (ii)(ii)联合使用冬小麦冠层数字图像的IWD和农作物冠层的高光谱图像的CWT可以支持多个生长阶段的冬小麦AGB的估计(CWT + IWD:R(2)= 0.85 ,MAE = 0.79 t ha(-1),Rmse = 1.01 t ha(-1)),包括后续生长阶段; (iii)SIS的组合使用和冬小麦冠层数字图像的IWD可以提高冬小麦agb的估计精度(SIS + IWD:R(2)= 0.80,MAE = 0.93 T HA(-1 ),RMSE = 1.22 T HA(-1)),其可能表明成像光谱仪和廉价的数码相机具有不同的优点,并且可以使用使用不同方法获得AGB估计。这项工作为使用高频IWD信息,高光谱CWT变量以及它们的组合提供了一种新的视角,以估算多种作物生长阶段的AGB。

著录项

  • 来源
    《International journal of remote sensing》 |2021年第6期|1602-1622|共21页
  • 作者单位

    Henan Agr Univ Coll Informat & Management Sci 63 Agr Rd Zhengzhou 450002 Henan Peoples R China|Nanjing Univ Int Inst Earth Syst Sci Nanjing Peoples R China|Beijing Res Ctr Informat Technol Agr Minist Agr Key Lab Quantitat Remote Sensing Agr Beijing Peoples R China;

    Beijing Res Ctr Informat Technol Agr Minist Agr Key Lab Quantitat Remote Sensing Agr Beijing Peoples R China|Zhejiang Acad Agr Sci Inst Agr Equipment Hangzhou Peoples R China;

    Henan Agr Univ Coll Informat & Management Sci 63 Agr Rd Zhengzhou 450002 Henan Peoples R China;

    Beijing Res Ctr Informat Technol Agr Minist Agr Key Lab Quantitat Remote Sensing Agr Beijing Peoples R China;

    Hefei Univ Technol Sch Resources & Environm Engn Hefei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 01:19:42
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号