首页> 外文期刊>International journal of numerical modelling >Magnetostriction strain measurement and its application for the numerical deformation calculation of a transformer
【24h】

Magnetostriction strain measurement and its application for the numerical deformation calculation of a transformer

机译:磁致伸缩应变测量及其在变压器数值变形计算中的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Attempts to lower the noise of electrical machines in general and the noise of transformers in particular have gained more attention during the last years. The deformation of the magnetised ferromagnetic materials, known as magnetostriction, is a significant contributor to this noise. The aim of this work is to model such deformation by means of numerical tools. To this end, first the magnetostrictive behaviour of the material is required to apply it further for the calculations. We start with an overview of the magnetostriction strain measurement setups developed at the Electrical Energy Laboratory of Ghent University. A recently developed setup using a heterodyne laser interferometer is compared with a strain gauge setup that has been developed in the past. The results obtained by the laser setup prove to have a higher accuracy than those obtained by the strain gauge setup. In the next step, the laser measurement results are applied to the numerical magnetostrictive deformation technique. Such technique is based on finite element approach and requires a model of the magnetostrictive behaviour of the core material, which is made on the basis of the experimental results. For the computation, continuum description of magnetoelastic materials based on Chu model formulations is considered. In this method, a set of forces are introduced, which in fact induce the same strain in the material as the magnetostriction does. Applying the measurement results obtained by the laser setup in the computation method enables us to better identify the core deformation. Copyright © 2013 John Wiley & Sons, Ltd.
机译:在过去的几年中,通常试图降低电机的噪声,尤其是降低变压器的噪声已经引起了更多的关注。磁化的铁磁材料的变形(称为磁致伸缩)是造成这种噪声的重要因素。这项工作的目的是通过数值工具对这种变形进行建模。为此,首先需要材料的磁致伸缩性能以将其进一步应用于计算。我们首先对在根特大学电能实验室开发的磁致伸缩应变测量装置进行概述。将使用外差激光干涉仪最近开发的设置与过去开发的应变仪设置进行了比较。激光设置获得的结果证明比应变仪设置获得的结果具有更高的精度。在下一步中,将激光测量结果应用于数值磁致伸缩变形技术。这种技术基于有限元方法,并且需要根据实验结果建立的芯材磁致伸缩行为模型。为了进行计算,考虑了基于Chu模型公式的磁弹性材料的连续描述。在这种方法中,引入了一组力,这些力实际上会在材料中引起与磁致伸缩相同的应变。将通过激光设置获得的测量结果应用到计算方法中,可以使我们更好地识别纤芯变形。版权所有©2013 John Wiley&Sons,Ltd.

著录项

  • 来源
  • 作者单位

    Electrical Energy Laboratory (EELAB) Department of Electrical Energy Systems and Automation (EESA) Ghent University Sint-Pietersnieuwstraat 41 Ghent Belgium;

    Electrical Energy Laboratory (EELAB) Department of Electrical Energy Systems and Automation (EESA) Ghent University Sint-Pietersnieuwstraat 41 Ghent Belgium;

    Laboratory of Biomedical Physics University of Antwerp Antwerp Belgium;

    Electrical Energy Laboratory (EELAB) Department of Electrical Energy Systems and Automation (EESA) Ghent University Sint-Pietersnieuwstraat 41 Ghent Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    magnetostriction; electrical steel; measurement; finite element; artificial neural network;

    机译:磁致伸缩;电工钢;测量;有限元;人工神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号