首页> 外文期刊>International journal of non-linear mechanics >Bifurcation and stability analyses for a pad-on-disc frictional system
【24h】

Bifurcation and stability analyses for a pad-on-disc frictional system

机译:圆盘摩擦系统的分叉和稳定性分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Friction-induced vibration of a pad-on-disc frictional system is analyzed in this paper. Equations of motion are established considering the moving load simulation and using the Stribeck-type friction model. The partial differential equation of the disc vibration is reduced to the 1st-order mode by the Galerkin method, then the obtained frictional coupled ODE equations are solved by the Runge–Kutta method. The system stability is investigated by the complex eigenvalue analysis, which shows that the relative-equilibrium of the braking pad loses its stability through super-critical Hopf bifurcation in tangential direction, no matter where the contact position is. Simulations show that the pure-slip limit cycle is resulted at the initial stage of the friction-induced instability. When the rotating speed decreases to a turning point, the pure-slip vibration turns to be stick–slip one as the amplitude increases to a certain level. Then the amplitude of stick–slip type limit cycle vibration decreases with the further decreasing speed. The Hopf point and turning point are influenced by the contacting stiffness. Three types of limit-cycle vibrations are analyzed both in time- and frequency-domains, which shows the critical speeds (Hopf points) under 1:2 and 1:4 internal resonances are much higher than that under non-internal resonance The higher the critical speed is, the earlier the instability occurs. That is to say the strong dynamical coupling between the moving elements of a structure brings earlier occurrence of the frictional instability during braking procedure. As a counterpart of the pad, the disc vibrates also with large amplitude transversely. Influences of the braking initial displacement and the normal pressure between the pad and disc on the instability are also discussed.
机译:本文分析了盘式摩擦系统的摩擦振动。考虑到运动载荷模拟并使用Stribeck型摩擦模型建立了运动方程。圆盘振动的偏微分方程通过Galerkin方法简化为一阶模态,然后用Runge–Kutta方法求解获得的摩擦耦合ODE方程。通过复特征值分析对系统稳定性进行了研究,结果表明,无论接触位置在哪里,制动衬片的相对平衡都会由于切线方向上的超临界Hopf分叉而失去稳定性。仿真表明,纯滑动极限循环是在摩擦引起的不稳定性的初始阶段产生的。当转速降低到转折点时,随着振幅增加到一定水平,纯滑动振动变成粘滑运动。然后,粘滑型极限循环振动的幅度随着速度的进一步降低而减小。 Hopf点和转折点受接触刚度的影响。在时域和频域中分析了三种类型的极限循环振动,这表明在1:2和1:4内部共振下的临界速度(霍夫点)远高于非内部共振下的临界速度。关键速度是,不稳定发生的时间越早。也就是说,结构的运动元件之间的强动力耦合在制动过程中导致较早出现摩擦不稳定性。作为垫的对应物,圆盘也以较大的幅度横向振动。还讨论了制动初始位移和制动衬块与制动盘之间的法向压力对不稳定性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号