首页> 外文期刊>International journal of low carbon technologies >Thermodynamic optimization of a triple-shaft open intercooled, recuperated gas turbine cycle. Part 2: power and efficiency optimization
【24h】

Thermodynamic optimization of a triple-shaft open intercooled, recuperated gas turbine cycle. Part 2: power and efficiency optimization

机译:三轴开式中冷,回热燃气轮机循环的热力学优化。第2部分:功率和效率优化

获取原文
获取原文并翻译 | 示例
           

摘要

The power and the efficiency of a triple-shaft open intercooled, recuperated gas turbine cycle are analyzed and optimized based on the model established using thermodynamic optimization theory in Part 1 of this paper by adjusting the low-pressure compressor inlet relative pressure drop, the mass flow rate and the distribution of pressure losses along the flow path. First, the power output is optimized by adjusting the intercooling pressure ratio, the air mass flow rate or the distribution of pressure losses along the flow path. Second, the thermodynamic first-law efficiency is optimized subject to a fixed fuel flow rate and a fixed overall size by seeking the optimal intercooling pressure ratio, the compressor inlet pressure drop and optimal flow area allocation ratio between the low-pressure compressor inlet and the power turbine outlet. The numerical examples show that increase in effectiveness of intercooler increases power output and its corresponding efficiency and increase in effectiveness of recuperator decreases power output appreciably but increases its corresponding efficiency; there exist an optimal low-pressure compressor inlet relative pressure drop and an optimal intercooling pressure ratio, which lead to a maximum power. For a fixed fuel mass rate and a fixed overall area of low-pressure compressor inlet and power turbine outlet, maximum thermodynamic first-law efficiency is obtained by optimizing low-pressure compressor inlet relative pressure drop and intercooling pressure ratio. The double-maximum thermodynamic first-law efficiency is obtained by searching optimal flow area allocation between low-pressure compressor inlet and power turbine outlet.
机译:根据本文第1部分中使用热力学优化理论建立的模型,通过调节低压压缩机进气口的相对压降,质量来分析和优化三轴开式中冷,换热式燃气轮机循环的功率和效率。流量和沿流路的压力损失分布。首先,通过调节中间冷却压力比,空气质量流量或沿流路的压力损失分布来优化功率输出。其次,通过寻求最佳的中冷压力比,压缩机入口压降和低压压缩机入口与进气口之间的最佳流通面积分配比,在固定的燃料流量和固定的总尺寸下优化热力学第一律效率。动力涡轮出口。数值算例表明,中冷器效率的提高会增加功率输出及其相应的效率,而换热器效率的提高会明显降低功率输出,但会提高其相应的效率。存在最佳的低压压缩机入口相对压降和最佳的中冷压力比,从而获得最大功率。对于固定的燃料质量比和低压压缩机入口和动力涡轮机出口的固定总面积,通过优化低压压缩机入口的相对压降和中间冷却压力比可获得最大的热力学第一律效率。通过搜索低压压缩机入口和动力涡轮出口之间的最佳流动面积分配,可获得双最大热力学第一律效率。

著录项

  • 来源
  • 作者单位

    Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China,Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China,College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China;

    Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China,Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China,College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China;

    Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China,Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China,College of Power Engineering, Naval University of Engineering, Wuhan 430033, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gas turbine cycle; intercooled; recuperated cycle; power; efficiency; thermodynamic optimization;

    机译:燃气轮机循环中冷恢复周期;功率;效率;热力学优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号