首页> 外文期刊>International journal of impact engineering >Experimental investigation and multiscale modeling of ultra-high-performance concrete panels subject to blast loading
【24h】

Experimental investigation and multiscale modeling of ultra-high-performance concrete panels subject to blast loading

机译:爆炸载荷作用下超高性能混凝土板的试验研究和多尺度建模

获取原文
获取原文并翻译 | 示例
       

摘要

Tailored cementitious materials, such as Ultra-High-Performance Concrete (UHPC), may significantly improve the blast resistance of structural panels. To understand and quantify the performance of UHPC panels subject to blast loading, four 1626- by 864- by 51-mm UHPC panels without steel rebar reinforcement were subjected to reflected impulse loads between 0.77 and 2.05 MPa-ms. The UHPC material was composed of a commercially available UHPC premix, high-range water reducing agent, 2% volume fraction of straight, smooth 14-mm-long by 0.185-mm-diameter fibers, and water. Experimental results determined that the UHPC panel fractured at a reflected impulse between 0.97 and 1.47 MPa-ms. These results were used to validate a multiscale model which accounts for structure and phenomena at two length scales: a multiple fiber length scale and a structural length scale. Within the multiscale model, a hand-shaking scheme conveys the energy barrier threshold and dissipated energy density from the model at the multiple fiber length scale to the model at the structural length scale. Together, the models at the two length scales account for energy dissipation through granular flow of the matrix, frictional pullout of the fibers, and friction between the interfaces. The simulated displacement and fracture patterns generated by the multiscale model are compared to experimental observations. This work is significant for three reasons: (1) new experimental data provide an upper and lower bound to the blast resistance of UHPC panels, (2) the multiscale model simulates the experimental results using readily available material properties and information regarding mesostructure attributes at two different length scales, and (3) by incorporating information from multiple length scales, the multiscale model can facilitate the design of UHPC materials to resist blast loading in ways not accessible using single length scale models.
机译:量身定制的胶结材料,例如超高性能混凝土(UHPC),可以显着提高结构面板的抗爆炸性。为了了解和量化承受爆炸载荷的UHPC面板的性能,对四块没有钢筋的1626 x 864 x 51毫米UHPC面板施加0.77到2.05 MPa-ms的反射脉冲载荷。 UHPC材料由市售的UHPC预混料,高范围减水剂,2%体积分数的直的,光滑的14毫米长,直径为0.185毫米的纤维和水组成。实验结果确定,UHPC面板在0.97至1.47 MPa-ms的反射脉冲下破裂。这些结果用于验证多尺度模型,该模型考虑了两个长度尺度的结构和现象:多纤维长度尺度和结构长度尺度。在多尺度模型中,握手方案将能量障碍阈值和耗散的能量密度从多纤维长度尺度的模型传递到结构长度尺度的模型。总之,两个长度尺度上的模型考虑了通过基体的颗粒流,纤维的摩擦拉出以及界面之间的摩擦引起的能量消耗。将多尺度模型生成的模拟位移和裂缝模式与实验观察结果进行比较。这项工作之所以有意义,有以下三个原因:(1)新的实验数据为UHPC面板的抗爆炸性提供了上限和下限;(2)多尺度模型使用易于获得的材料特性和有关两个位置的介观结构属性的信息来模拟实验结果(3)通过合并来自多个长度尺度的信息,多尺度模型可以促进UHPC材料的设计,从而以单长度尺度模型无法访问的方式抵抗爆炸载荷。

著录项

  • 来源
    《International journal of impact engineering》 |2014年第7期|95-103|共9页
  • 作者单位

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA;

    U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA;

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA;

    Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    UHPC; Blast loading; Multiscale modeling;

    机译:UHPC;爆炸加载;多尺度建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号