首页> 外文期刊>International journal of impact engineering >The influence of mechanical and microstructural properties on the rate-dependent fracture strength of ceramics in uniaxial compression
【24h】

The influence of mechanical and microstructural properties on the rate-dependent fracture strength of ceramics in uniaxial compression

机译:力学性能和微结构性能对单轴压缩陶瓷速率相关断裂强度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of the article is to improve our understanding of how material properties and stress state affect the performance of ceramics at both low and high rates of deformation. Accordingly, studies are performed using finite element simulations and a validated constitutive model, due to Deshpande and Evans (V.S. Deshpande and A.G. Evans, Inelastic deformation and energy dissipation in ceramics: A mechanism-based constitutive model, Journal of the Mechanics and Physics of Solids 56 pp. 3077-3100 (2008)), to investigate the relationship between the mechanical and microstructural properties of ceramics and their rate-dependent fracture strengths in uniaxial compression. The compression simulations consider two different cases, delineated by the boundary condition imposed on the circumferential surface of the cylindrical test specimen: (Case I) A traction-free boundary, allowing for radial confining stresses to develop due to radial inertia; and (Case II) a radial velocity boundary condition with a magnitude that prevents radial stresses from developing. Thus, in the Case II, as in the split Hopkinson pressure bar test, the stress state is uniaxial stress for all applied strain rates. Consistent with experimental results, the model predicts two regimes of rate-dependent fracture strength: (i) A quasistatic regime, for strain rates below a characteristic strain rate, in which the fracture strength is constant and thus insensitive to strain rate; and (ii) a dynamic regime, at strain rates above a characteristic strain rate, in which the fracture strength exceeds quasistatic values and is strain rate sensitive. Dynamic strengthening at high rates is shown to be due to two mechanisms that delay ceramic fracture: (i) Inertia-induced radial confinement and (ii) the limited growth velocities of microcracks. Quasistatic strength sigma(o) and characteristic strain rate (epsilon) over dot(0) are found to depend on three mechanical properties and two microstructural properties; through control of these parameters the rate-dependent fracture strength, and thus ballistic performance, of manufactured ceramics can be manipulated. Scaling the results by these characteristic parameters reveals self-similarity among all uniaxial stress results (Case II): If the applied strain rate (epsilon) over dot is normalized by (epsilon) over dot(0) and the fracture strength sigma(f) is normalized by sigma(0), all the results collapse down onto a single universal curve described by a power law. Next, we show that experimental results for the compressive behavior of a large number of brittle materials is well described by the derived scaling law. Finally, the model is calibrated to SiC N, by fitting the scaling law to empirical data, and its response validated. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文的目的是增进我们对材料特性和应力状态如何在低变形率和高变形率下影响陶瓷性能的理解。因此,由于Deshpande和Evans(VS Deshpande和AG Evans,《陶瓷中的非弹性变形和能量耗散:基于机理的本构模型》,《固体力学与物理学》),使用有限元模拟和经过验证的本构模型进行了研究。 56页。3077-3100(2008)),以研究陶瓷的机械和微观结构特性及其在单轴压缩中与速率相关的断裂强度之间的关系。压缩模拟考虑了两种不同的情况,由施加在圆柱试样圆周表面上的边界条件来描述:(情况I)无牵引力边界,允许由于径向惯性而产生径向约束应力; (情况二)径向速度边界条件,其大小可防止径向应力的产生。因此,在情况II中,如在分开的Hopkinson压力棒试验中一样,对于所有施加的应变速率,应力状态均为单轴应力。与实验结果一致,该模型预测了速率依赖的断裂强度的两种状态:(i)准静态状态,对于低于特征应变率的应变率,其中断裂强度是恒定的,因此对应变率不敏感; (ii)在高于特征应变率的应变率下的动态状态,其中断裂强度超过准静态值并且对应变率敏感。高速率的动态强化被证明是由于两种延迟陶瓷断裂的机理所致:(i)惯性引起的径向约束和(ii)微裂纹的有限生长速度。发现准静态强度sigma(o)和点(0)上的特征应变率(epsilon)取决于三个机械性能和两个微观结构性能。通过控制这些参数,可以控制与速率有关的断裂强度,从而可以控制人造陶瓷的弹道性能。通过这些特征参数对结果进行缩放可以揭示所有单轴应力结果之间的自相似性(案例II):如果通过点(0)和断裂强度sigma(f)对点上的应变速率(ε)进行归一化通过sigma(0)进行归一化,所有结果都分解为幂定律描述的单个通用曲线。接下来,我们证明导出的缩放定律很好地描述了许多脆性材料的压缩行为的实验结果。最后,通过将比例定律拟合到经验数据,将模型校准为SiC N,并验证其响应。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号