首页> 外文期刊>International journal of hydrogen energy >Commercializable power source using heterogeneous hydrino catalysts
【24h】

Commercializable power source using heterogeneous hydrino catalysts

机译:使用非均氢分数氢催化剂的商业化电源

获取原文
获取原文并翻译 | 示例
       

摘要

Using Maxwell's equations, the structure of the electron was derived by Mills as a boundary-value problem wherein the electron comprises the source current of time-varying electromagnetic fields during transitions with the constraint that the bound n = 1 state electron cannot radiate energy. A reaction predicted by the solution involves a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen to a catalyst capable of accepting the energy. Specifically, a catalyst comprises a chemical or physical process with an enthalpy change equal to an integer multiple m of the potential energy of atomic hydrogen, 27.2 Ev. The product is H (1/p), fractional Rydberg states ofrnatomic hydrogen called "hydrino atoms" wherein n = 1/2,1/3,1/4…..1/p ( p ≤ 137 is anrninteger) replaces the well-known parameter n = integer in the Rydberg equation for hydrogen excited states. The reaction step of a nonradiative energy transfer of an integer multiple of 27.2 Ev from atomic hydrogen to the catalyst results in an ionized catalyst and free electrons that may cause the reaction to rapidly cease due to charge accumulation. Li, K, and NaH served as the catalysts to form hydrinos at a rapid rate when a high-surface-area conductive support doped with an oxidant was added to speed up the rate limiting step, the removal of electrons from the catalyst as it is ionized by accepting the nonradiative resonant energy transfer from atomic hydrogen to form hydrinos. The concerted electron-acceptor reaction from the catalyst to oxidant via the support was also exothermic to heat the reactants and enhance the rates. Using water-flow, batch calorimetry, the measured power and energy gain from these heterogeneous catalyst systems were up to over 10 W/cm~3 (reactant volume) and a factor of over six times the maximum theoretical, respectively. The reaction scaled linearly to 580 Kj that developed a power of about 30 Kw. Solution ~1H NMR on samples extracted from the reaction products in DMF-d7 showed the predicted H_2 (1/4) and H (1/4) at 1.2 ppm and -3.8 ppm, respectively. ToF-SIMs showed sodium hydrino hydride peaks such as NaH_x, peaks with NaH catalyst, and the predicted 11 Ev binding energy of H (1/4) was observed by XPS. In an advancement over prior NaOH-doped Raney Ni power systems, the reactants of each solid fuel or heterogeneous-catalyst system can be regenerated from the products using commercial chemical-plant systems. Based on the observed energy gain and successful thermal regeneration, green power plants can be operated continuously as power and eutectic-melt electrolysis or thermal regeneration reactions are maintained in synchrony. The system is closed except that only hydrogen consumed in forming hydrinos need be replaced. Hydrogen can be obtained ultimately from the water with 200 times the energy release relative to combustion. These results indicate current commercial feasibility.
机译:使用麦克斯韦方程,由米尔斯推导了电子的结构作为边值问题,其中电子包含跃迁期间随时间变化的电磁场的源电流,其约束是束缚的n = 1状态电子不能辐射能量。该溶液预测的反应涉及从原本稳定的原子氢到能够接受该能量的催化剂的共振非辐射能量转移。具体而言,催化剂包括焓变等于原子氢势能27.2 Ev的整数倍的化学或物理过程。乘积为H(1 / p),称为“分数氢原子”的原子氢的分数里德堡态,其中n = 1 / 2、1 / 3、1 / 4…..1 / p(p≤137是整数)替代井对于氢激发态,Rydberg方程中的已知参数n =整数。从原子氢到催化剂的27.2 Ev的整数倍的非辐射能量转移的反应步骤会导致离子化的催化剂和自由电子,这些自由电子会由于电荷积累而导致反应迅速停止。当添加掺杂有氧化剂的高表面积导电载体以加快速率限制步骤时,Li,K和NaH用作催化剂以快速形成分数氢,从而加速了限速步骤,即从催化剂中去除电子通过接受氢原子的非辐射共振能量转移而形成分数氢而电离。从催化剂经由载体到氧化剂的协调的电子受体反应也放热以加热反应物并提高速率。使用水流,间歇量热法,从这些多相催化剂系统测得的功率和能量增益分别高达10 W / cm〜3(反应物体积)以上,是最大理论值的六倍以上。反应线性扩展至580 Kj,产生约30 Kw的功率。在DMF-d7中从反应产物中提取的样品上的溶液〜1H NMR测得的预测H_2(1/4)和H(1/4)分别为1.2 ppm和-3.8 ppm。 ToF-SIMs显示分数氢氢化钠峰(例如NaH_x),使用NaH催化剂的峰,并且通过XPS观察到了H(1/4)的预测11 Ev结合能。与现有的掺杂NaOH的阮内镍(Raney Ni)动力系统相比,在进步方面,可以使用商业化工厂系统从产物中再生每种固体燃料或非均相催化剂系统的反应物。基于观察到的能量获取和成功的热再生,绿色发电厂可以连续运行,因为电力和共熔电解或热再生反应可以保持同步。该系统是封闭的,只是只需要更换形成分数氢时消耗的氢气。最终可以从水中获得氢气,其能量释放是燃烧的200倍。这些结果表明当前的商业可行性。

著录项

  • 来源
    《International journal of hydrogen energy》 |2010年第2期|395-419|共25页
  • 作者单位

    BlackeLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA;

    BlackeLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA;

    BlackeLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA;

    BlackeLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA;

    BlackeLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA;

    BlackeLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA;

    BlackeLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heterogeneous catalyst reactions; molecular hydrino; hydrino hydride ion; calorimetry; NMR spectroscopy; ToF-SIMs; XPS;

    机译:异相催化剂反应分子分数氢氢氢阴离子量热法NMR光谱;ToF-SIMs;XPS;
  • 入库时间 2022-08-18 00:29:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号