首页> 外文期刊>International journal of hydrogen energy >Numerical study of laminar flame properties of diluted methane-hydrogen-air flames at high pressure and temperature using detailed chemistry
【24h】

Numerical study of laminar flame properties of diluted methane-hydrogen-air flames at high pressure and temperature using detailed chemistry

机译:使用详细化学方法对甲烷-氢-空气稀释的火焰在高压和高温下的层流火焰特性进行数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

Technical limits of high pressure and temperature measurements as well as hydrodynamic and thermo-diffusive instabilities appearing in such conditions prevent the acquisition of reliable results in term of burning velocities, restraining the domain of validity of current laminar flame speed correlations to few bars and hundreds of Kelvin. These limits are even more important when the reactivity of the considered fuel is high. For example, the high-explosive nature of pure hydrogen makes measurements even more tricky and explains why only few correlations are available to describe the laminar flame velocity of high hydrogen blended fuels as CH4—H2 mixtures. The motivation of this study is thereby to complement experimental measurements, by extracting laminar flame speeds and thicknesses from complex chemistry one-dimensional simulations of premixed laminar flames. A wide number of conditions are investigated to cover the whole operating range of common practical combustion systems such as piston engines, gas turbines, industrial burners, etc. Equivalence ratio is then varied from 0.6 to 1.3, hydrogen content in the fuel from 0 to 100%, residual burned gas mass ratio from 0 to 30%, temperature of the fresh mixtures from 300 to 950 K, and pressure from 0.1 to 11.0 MPa. Many chemical kinetics mechanisms are available to describe premixed combustion of CH4-H2 blends and several of them are tested in this work against an extended database of laminar flame speed measurements from the literature. The GRI 3.0 scheme is finally chosen. New laminar flame speed and thickness correlations are proposed in order to extend the domain of validity of experimental correlations to high proportions of hydrogen in the fuel, high residual burned gas mass ratios as well as high pressures and temperatures. A study of the H2 addition effect on combustion is also achieved to evaluate the main chemical processes governing the production of H atoms, a key contributor to the dumping of the laminar flame velocity.
机译:在这种情况下出现的高压和高温测量技术极限以及流体动力和热扩散不稳定性,阻碍了在燃烧速度方面获得可靠的结果,从而将当前层流火焰速度相关性的有效性范围限制在几巴和几百巴。开尔文当所考虑的燃料的反应性很高时,这些限制甚至更为重要。例如,纯氢的高爆炸性质使测量变得更加棘手,并解释了为什么只有很少的相关性可用来描述作为CH4-H2混合物的高氢混合燃料的层流火焰速度。因此,本研究的动机是通过从预混合层流火焰的复杂化学一维模拟中提取层流火焰的速度和厚度来补充实验测量值。研究了广泛的条件,以涵盖普通实际燃烧系统的整个运行范围,例如活塞发动机,燃气轮机,工业燃烧器等。然后,当量比从0.6到1.3变化,燃料中的氢含量从0到100 %,残余燃烧气体质量比为0至30%,新鲜混合物的温度为300至950K,压力为0.1至11.0MPa。有许多化学动力学机制可用于描述CH4-H2混合物的预混燃烧,并且针对文献中扩展的层流火焰速度测量数据库,对其中的一些进行了测试。最终选择了GRI 3.0方案。提出了新的层流火焰速度和厚度相关性,以将实验相关性的有效性范围扩展到燃料中高比例的氢,高残留燃烧气体质量比以及高压和高温。还研究了氢气对燃烧的影响,以评估控制H原子产生的主要化学过程,H原子是层流火焰速度降低的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号