首页> 外文期刊>International journal of hydrogen energy >Decomposition of lithium magnesium aluminum hydride
【24h】

Decomposition of lithium magnesium aluminum hydride

机译:氢化锂镁铝的分解

获取原文
获取原文并翻译 | 示例
           

摘要

The quaternary aluminum hydride LiMg{AlH_4)_3 contains 9.7 wt% hydrogen, of which 7.2 wt% can be released in a two-step decomposition reaction via first formation of LiMgAlH_6 and then the binary hydrides MgH_2 and LiH. In-situ synchrotron radiation powder X-ray diffraction and thermal desorption spectroscopy measurements were performed to analyze the product distributions formed during the thermal decomposition of LiMg(AlD4)3. The first decomposition step occurs at about 120 ℃ and the second at about 160 ℃ for the as-milled sample, while for a purified sample of LiMg(AlD_4)_3, the decomposition temperatures involving release of hydrogen increase to 140 and 190 ℃, respectively, suggesting that pure samples of LiMg(AlD_4)_3 are kinetically stabilized. Studies of the purified LiMg(AlD_4)_3 also showed that the second decomposition step can be divided into two reactions: 3IiMgAlD_6 → LisAlD_6 + 3MgD_2 + 2Al + 3D_2 and Li_3AlD_6→3LiD + Al + 3/2D_2. Addition of TiCl_3 to LiMg(AlD_4)_3 under a variety of ball milling conditions consistently led to decomposition of LiMg(AlD_4)_3 during milling. Correspondingly, all attempts to rehydrogenate the (completely or partially) decomposed samples at up to 200 bar hydrogen pressure failed. Decomposition of MgD_2 was observed at relatively low temperatures. This is ascribed to thermodynamic destabilization due to the formation of different Al_xMg_y phases, and to kinetic destabilization by addition of TiCl_3. A thermodynamic assessment was established for the calculation of phase stability and decomposition reaction relationships within the Li-Mg-Al-H system. The calculations confirmed the metastability of the LiMg(AlH_4)_3 phase and the irreversibility of the Li-Mg alanate phase decomposition reactions. The Li-Mg alanate decomposition pathways followed experimentally could be explained by the endothermicity of the calculated decomposition enthalpies, in that an impure or catalyzed LiMgAlH_6 intermediate phase could more directly access an endothermic decomposition reaction at lower temperatures, while a kinetically-hindered, purified LiMgAlH_6 would require higher temperatures to initiate the two-step decomposition through an exothermic reaction.
机译:季氢化铝LiMg {AlH_4)_3含9.7 wt%的氢,其中7.2 wt%的氢可通过首先形成LiMgAlH_6然后形成二元氢化物MgH_2和LiH在两步分解反应中释放。进行了原位同步加速器辐射粉末X射线衍射和热解吸光谱测量,以分析LiMg(AlD4)3热分解过程中形成的产物分布。对于研磨后的样品,第一分解步骤在约120℃发生,第二分解步骤在约160℃发生,而对于纯化的LiMg(AlD_4)_3样品,涉及氢释放的分解温度分别提高到140和190℃。 ,表明LiMg(AlD_4)_3的纯样品是动力学稳定的。对纯化的LiMg(AlD_4)_3的研究还表明,第二个分解步骤可以分为两个反应:3IiMgAlD_6→LisAlD_6 + 3MgD_2 + 2Al + 3D_2和Li_3AlD_6→3LiD + Al + 3 / 2D_2。在各种球磨条件下,向LiMg(AlD_4)_3中添加TiCl_3始终导致LiMg(AlD_4)_3在研磨过程中分解。相应地,所有试图在高达200 bar的氢气压力下使(完全或部分)分解的样品再氢化的尝试均告失败。在相对较低的温度下观察到MgD_2的分解。这归因于由于形成不同的Al_xMg_y相而引起的热力学不稳定,以及由于添加TiCl_3而引起的动力学不稳定。建立了热力学评估以计算Li-Mg-Al-H系统中的相稳定性和分解反应关系。计算结果证实了LiMg(AlH_4)_3相的亚稳性和Li-Mg铝酸盐相分解反应的不可逆性。实验中遵循的Li-Mg丙氨酸盐分解途径可通过计算出的分解焓的吸热来解释,因为不纯或催化的LiMgAlH_6中间相可以在较低温度下更直接地进入吸热分解反应,而受动力学阻碍的纯LiMgAlH_6将需要更高的温度以通过放热反应引发两步分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号