首页> 外文期刊>International journal of hydrogen energy >Gas-diffusion layer's structural anisotropy induced localized instability of nation membrane in polymer electrolyte fuel cell
【24h】

Gas-diffusion layer's structural anisotropy induced localized instability of nation membrane in polymer electrolyte fuel cell

机译:气体扩散层的结构各向异性引起高分子电解质燃料电池中国家膜的局部不稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

The design of robust polymer electrolyte fuel cell requires a thorough understanding of the materials' response of the cell components to the operational conditions such as temperature and hydration. As the electrolyte membrane's mechanical properties are temperature, hydration and rate dependent, its response under cyclic loading is of significant importance to predict the damage onset and thus the membrane lifetime. This article reports on the variation in stress levels in the membrane induced due to the gas-diffusion layer's (GDL) anisotropic mechanical properties while accurately capturing the membrane's mechanical response under time dependent hygrothermomechanical conditions. An observation is made on the evolution of negative strain in the membrane under the bipolar plate channel area, which is an indication of membrane thinning, and the magnitude of this strain found to depend upon the GDL's in-plane mechanical properties. In order to come up with a strategy that reduces the magnitude of tensile stresses evolved in the membrane during the hygrothermal unloading and to increase the membrane's lifetime, we numerically show that by employing a fast hygrothermal loading rate and unloading rate strategy, significant reduction (in this study, nearly 100%) in the magnitude of tensile stresses is achievable. The present study assists in understanding the relation between materials compatibility and durability of fuel cell components.
机译:坚固的聚合物电解质燃料电池的设计要求对电池组件材料对运行条件(例如温度和水合作用)的响应有透彻的了解。由于电解质膜的机械性能取决于温度,水合作用和速率,因此其在循环载荷下的响应对于预测损伤的开始以及由此的膜寿命至关重要。本文报道了由于气体扩散层(GDL)各向异性的机械性能而引起的膜应力水平的变化,同时在与时间有关的湿热力学条件下准确地捕获了膜的机械响应。观察到在双极板通道区域下膜中负应变的演变,这表明膜变薄,并且发现该应变的大小取决于GDL的面内机械性能。为了提出减少湿热卸载过程中在膜中产生的拉应力大小并延长膜寿命的策略,我们用数值方法表明,通过采用快速的湿热装载率和卸载率策略,显着降低了(这项研究的拉伸应力大小接近100%是可以实现的。本研究有助于理解材料相容性与燃料电池组件耐久性之间的关系。

著录项

  • 来源
    《International journal of hydrogen energy》 |2012年第20期|p.15339-15349|共11页
  • 作者单位

    Fuel Cell Research Center, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea;

    Fuel Cell Research Center, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea,School of Mechanical and Aerospace Engineering, Seoul National University, 559 Guwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea;

    Fuel Cell Research Center, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea;

    Fuel Cell Research Center, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gas-diffusion layer; in-plane anisotropy; nafion membrane; hygrothermal cycle; loading and unloading rate; compressive strain;

    机译:气体扩散层面内各向异性天然膜湿热循环装卸率;压缩应变;
  • 入库时间 2022-08-18 00:28:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号