首页> 外文期刊>International journal of hydrogen energy >Hydrogen storage systems based on hydride materials with enhanced thermal conductivity
【24h】

Hydrogen storage systems based on hydride materials with enhanced thermal conductivity

机译:基于氢化物材料的储氢系统,导热性增强

获取原文
获取原文并翻译 | 示例
       

摘要

The reaction of hydrogen gas with a metal to form a metal hydride is exothermic. If the heat released is not removed from the system, the resulting temperature rise of the hydride will reduce the hydrogen absorption rate. Hence, hydrogen storage systems based on hydride materials must include a way to remove the heat generated during the absorption process. The heat removal rate can be increased by (ⅰ) increasing the effective thermal conductivity of the metal hydride by mixing it with high-conductivity materials such as aluminum foam or graphite, (ⅱ) optimizing the shape of the tank, and (ⅲ) introducing an active cooling environment instead of relying on natural convection. This paper presents a parametric study of hydrogen storage efficiency that explores quantitatively the influence of these parameters. An axisymmetric mathematical model was formulated in Ansys Fluent 12.1 to evaluate the transient heat and mass transfer in a cylindrical metal hydride tank, and to predict the transient temperatures and mass of hydrogen stored as a function of the thermal conductivity of the enhanced hydride material, aspect ratio of the cylindrical tank, and thermal boundary conditions. The model was validated by comparing the transient temperature at selected locations within the storage tank with concurrent experiments conducted with LaNi_s material. The parametric study revealed that the aspect ratio of the tank has a stronger influence when the effective thermal conductivity of the metal hydride bed is low or when the heat removal rate from the tank surface is high (active cooling). It was also found that for a hydrogen filling time of 3 min, adding 30% aluminum foam to the metal hydride maximizes hydrogen absorption under natural convection, whereas the addition of only 10% aluminum foam maximizes the hydrogen content under active cooling. For filling times beyond 3 min, the amount of aluminum foam required to maximize hydrogen content can be reduced for both natural convection and active cooling. This study should prove useful in the design of practical metal hydride-based hydrogen storage systems.
机译:氢气与金属反应形成金属氢化物的反应是放热的。如果释放的热量没有从系统中除去,则氢化物导致的温度升高将降低氢的吸收速率。因此,基于氢化物材料的储氢系统必须包括一种消除吸收过程中产生的热量的方法。可以通过(ⅰ)通过将金属氢化物与高导电性材料(例如泡沫铝或石墨)混合来提高金属氢化物的有效导热率,(ⅱ)优化储罐的形状,以及(ⅲ)引入热量来提高散热率主动的冷却环境,而不是依靠自然对流。本文提出了储氢效率的参数研究,定量研究了这些参数的影响。在Ansys Fluent 12.1中制定了轴对称数学模型,以评估圆柱形金属氢化物罐中的瞬态传热和传质,并预测瞬态温度和氢的存储量与增强型氢化物材料的导热系数的关系,圆柱罐的比例和热边界条件。通过将储罐内选定位置的瞬态温度与用LaNi_s材料进行的并行实验进行比较,验证了该模型的有效性。参数研究表明,当金属氢化物床的有效导热系数较低或从罐表面的排热率较高(主动冷却)时,罐的纵横比会产生更大的影响。还发现对于3分钟的氢气填充时间,向金属氢化物添加30%的泡沫铝可使自然对流下的氢吸收最大化,而仅添加10%的泡沫铝可在主动冷却下使氢含量最大化。对于超过3分钟的填充时间,自然对流和主动冷却都可以减少使氢含量最大化所需的泡沫铝量。这项研究应证明对设计实用的基于金属氢化物的储氢系统很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号