首页> 外文期刊>International journal of hydrogen energy >CFD model for charge and discharge cycle of adsorptive hydrogen storage on activated carbon
【24h】

CFD model for charge and discharge cycle of adsorptive hydrogen storage on activated carbon

机译:活性炭吸附储氢充放电循环的CFD模型。

获取原文
获取原文并翻译 | 示例
       

摘要

High surface area activated carbons and other microporous adsorbents have generated a significant amount of interest over the past decade as storage media for hydrogen and natural gas, due to their high storage capacity at low temperatures and their use in gas purification processes. This paper uses computational fluid dynamics (CFD) to simulate the charging and discharging of a sorption-based hydrogen storage system. The CFD model is based on the mass, momentum and energy conservation equations of a system formed of gaseous and adsorbed hydrogen, an activated carbon bed and steel tank walls. The adsorption process is modeled using the Dubinin-Astakov adsorption isotherms extended to the supercritical regime. The model is implemented using Fluent. In our study, we can obtain accuracy peak temperature of simulation due to a non-constant isosteric heat of adsorption is used, derived from the model isotherms. We adopt piecewise heat capacity to consider the heat capacity of the adsorbed phase of hydrogen. We can make a conclusion that the simulated temperatures without consideration of heat capacity for hydrogen in adsorbed phase (c_pa), rise faster and reach higher peaks than the simulated temperatures with consideration of c_pa, and diverge more from experimental results. Also, we study the changes of temperature, pressure and adsorption during the charging and discharging processes as well as when the system is idle (which we define as dormancy) in the case of room temperature water cooling. The results are compared with experimental data from a storage unit cooled with room temperature water. The simulated pressure is in a good agreement with the experimental values. The simulated temperature profiles are also generally in good agreement with the experimental values, except close to the inlet and the wall. In addition, we have studied the effect of quality of the mesh on the accuracy and stability of the numerical computation and the influence of the mass flow rates on temperature and adsorption capacity.
机译:在过去的十年中,高表面积的活性炭和其他微孔吸附剂作为氢气和天然气的存储介质,引起了人们的极大兴趣,这是由于它们在低温下的高存储容量以及它们在气体净化过程中的使用。本文使用计算流体动力学(CFD)来模拟基于吸附的储氢系统的充放电。 CFD模型基于由气态和吸附氢,活性炭床和钢制罐壁组成的系统的质量,动量和能量守恒方程。使用扩展到超临界状态的Dubinin-Astakov吸附等温线对吸附过程进行建模。该模型是使用Fluent实现的。在我们的研究中,由于模型等温线的使用,由于使用了非恒定的等规吸附热,我们可以获得精确的模拟峰值温度。我们采用分段热容量来考虑氢吸附相的热容量。我们可以得出一个结论,在不考虑吸附相中氢的热容(c_pa)的情况下,模拟温度比考虑c_pa的模拟温度升高得更快并且达到更高的峰值,并且与实验结果相差更大。此外,在室温水冷却的情况下,我们研究充放电过程中以及系统处于闲置状态(我们定义为休眠)时温度,压力和吸附的变化。将结果与来自用室温水冷却的存储单元的实验数据进行比较。模拟压力与实验值非常吻合。除了靠近入口和壁之外,模拟的温度曲线通常也与实验值良好吻合。此外,我们研究了网眼质量对数值计算的准确性和稳定性的影响,以及质量流量对温度和吸附能力的影响。

著录项

  • 来源
    《International journal of hydrogen energy》 |2013年第3期|1450-1459|共10页
  • 作者单位

    Hubei Key Laboratory of Advanced Technology for Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Hubei 430070, China,Hydrogen Research Institute, Universite du Quebec a Trois-Riuieres, QC G9A 5H7, Canada;

    School of Materials Science and Engineering, Wuhan University of Technology, Hubei 430070, China;

    Hydrogen Research Institute, Universite du Quebec a Trois-Riuieres, QC G9A 5H7, Canada;

    Hydrogen Research Institute, Universite du Quebec a Trois-Riuieres, QC G9A 5H7, Canada;

    Hydrogen Research Institute, Universite du Quebec a Trois-Riuieres, QC G9A 5H7, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hydrogen storage; activated carbon; adsorption; charge; discharge; computational fluid dynamics;

    机译:储氢活性炭;吸附收费;排出;计算流体动力学;
  • 入库时间 2022-08-18 00:27:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号