首页> 外文期刊>International journal of hydrogen energy >Optimization of hydrogen charging process parameters for an advanced complex hydride reactor concept
【24h】

Optimization of hydrogen charging process parameters for an advanced complex hydride reactor concept

机译:先进的复杂氢化物反应器概念的充氢工艺参数优化

获取原文
获取原文并翻译 | 示例
           

摘要

Complex hydrides are identified as promising hydrogen storage media with gravimetric capacities up to 10 wt.%. However, the high temperatures required for the initiation of their hydrogen charging process and their slow kinetics prevent their integration in many practical applications. This paper discusses the challenge of addressing these issues by combining this kind of materials with the appropriate metal hydrides. For this purpose, the complex hydride, 2LiNH_2-1.1MgH_2-0.1LiBH_4-3 wt.% ZrCoH_3 (CxH) and the metal hydride, LaNi_(4.3)Al_(0.4)Mn_(0.3) (MeH) have been selected as reference materials. The studied configuration corresponds to a tubular reactor where the metal hydride and the complex hydride, separated by a gas permeable layer, are embedded respectively in the centre and the annular ring of the reactor. A 1-dimensional finite element model and a dimensionless number comparing the dominance of the kinetics and the heat transfer processes have been developed to optimize the charging process for different thicknesses and volumetric ratios of the studied materials. For the selected cases, the influence of the thermal properties of the complex hydride and the operating conditions on the charging process is assessed. A sensitivity study has shown that the thermal conductivity of the CxH is the most important parameter influencing the hydrogen storage rate if thick MeH and CxH beds are considered. In contrast, the hydrogen loading time is significantly improved by increasing the coolant temperature for small thicknesses of the two storage media. Thereafter, the gravimetric and volumetric capacities resulting from the scale up of the optimized configurations to store 1 kg of hydrogen are calculated and results are discussed taking into account the interdependence of the different studied parameters.
机译:复杂的氢化物被认为是有前途的氢存储介质,其重量分析能力高达10 wt。%。然而,开始其氢填充过程所需的高温及其缓慢的动力学阻碍了它们在许多实际应用中的整合。本文讨论了通过将这类材料与适当的金属氢化物结合来解决这些问题的挑战。为此,已选择复合氢化物2LiNH_2-1.1MgH_2-0.1LiBH_4-3 wt。%ZrCoH_3(CxH)和金属氢化物LaNi_(4.3)Al_(0.4)Mn_(0.3)(MeH)作为参考材料。所研究的构造对应于管式反应器,其中由气体可渗透层分隔的金属氢化物和复合氢化物分别嵌入反应器的中心和环形环中。已经开发出一维有限元模型和无因次数来比较动力学和传热过程的优势,以针对不同厚度和体积比的研究材料优化装料过程。对于选定的情况,评估了复合氢化物的热性能和操作条件对装料过程的影响。敏感性研究表明,如果考虑使用厚的MeH和CxH床,则CxH的导热系数是影响储氢速率的最重要参数。相反,对于两种厚度较小的存储介质,通过增加冷却液温度可以显着改善氢气装载时间。此后,计算出由优化配置按比例放大以存储1 kg氢所产生的重量和体积容量,并考虑了不同研究参数的相互依赖性,讨论了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号