首页> 外文期刊>International journal of hydrogen energy >Improvement in methanogenesis by incorporating transition metal nanoparticles and granular activated carbon composites in microbial electrolysis cells
【24h】

Improvement in methanogenesis by incorporating transition metal nanoparticles and granular activated carbon composites in microbial electrolysis cells

机译:通过将过渡金属纳米颗粒和颗粒状活性炭复合物掺入微生物电解池中来改善甲烷生成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Electromethanogenesis is a form of electrobiofuel production through a microbial electrolysis cell (MEC) where methane (CH4) is directly produced from an electrical current and carbon dioxide (CO2) using a cathode. With the aim of maximizing methanogenesis in an MEC, this study utilized granular activated carbon (GAC) and a transition metal catalyst to fabricate nickel (Ni) nanoparticle (NP)-loaded GAC (Ni-NP/GAC) composites and incorporated these into MECs. In this set-up, GAC acted as the main electrical conduit for direct interspecies electron transfer (DIET) between exoelectrogens and methanogenic electrotrophs, and the Ni-NPs served as a catalyst to further improve microbe-to-GAC electron transfer. The Ni-NP/GAC-composites were prepared using two different methods (microwave irradiation and solution plasma ionization). The Ni NPs were determined to be well doped on the GAC surface according to a field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray (EDX) spectroscopy analysis. Adding GAC into MECs improved CH4 production. The Ni-NP/GAC composites prepared by solution plasma ionization showed the highest CH4 production (20.7 ml), followed by the Ni-NP/GAC composite prepared by microwave irradiation (19.6 ml), bare GAC (15.6 ml), and GAC-free control (9.6 ml). In the methanogenic MECs, 40.6% of CH4 was produced from an electrode reaction (i.e., reduction of CO2 to CH4), and the remaining 59.4% was generated by nonelectrode reactions. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:甲烷生成是通过微生物电解池(MEC)产生的一种电生物燃料,其中通过阴极直接从电流和二氧化碳(CO2)中直接产生甲烷(CH4)。为了最大程度地提高MEC的甲烷生成量,本研究利用颗粒状活性炭(GAC)和过渡金属催化剂来制备负载有镍(Ni)纳米颗粒(NP)的GAC(Ni-NP / GAC)复合材料,并将其掺入MEC中。在此设置中,GAC充当了外生电子与产甲烷电营养体之间直接种间电子转移(DIET)的主要电导管,而Ni-NP充当催化剂,进一步改善了微生物向GAC的电子转移。使用两种不同的方法(微波辐射和溶液等离子体电离)制备Ni-NP / GAC复合材料。根据场发射扫描电子显微镜(FE-SEM)和能量色散X射线(EDX)光谱分析,确定Ni NPs很好地掺杂在GAC表面上。将GAC添加到MEC中可提高CH4的产量。通过溶液等离子体电离制备的Ni-NP / GAC复合材料显示最高的CH4生成量(20.7 ml),其次是通过微波辐射制备的Ni-NP / GAC复合材料(19.6 ml),裸GAC(15.6 ml)和GAC-自由控制(9.6毫升)。在产甲烷的MEC中,通过电极反应(即,将CO 2还原为CH 4)产生了40.6%的CH 4,其余的59.4%是通过非电极反应产生的。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号