首页> 外文期刊>International journal of hydrogen energy >Dual Loop line-focusing solar power plants with supercritical Brayton power cycles
【24h】

Dual Loop line-focusing solar power plants with supercritical Brayton power cycles

机译:具有超临界布雷顿功率循环的双回路集中式太阳能发电厂

获取原文
获取原文并翻译 | 示例
           

摘要

This study is focused on proposing the combination of a Dual Loop solar field, with Dowtherm A and the Solar Salt as heat transfer fluids in parabolic or linear Fresnel solar collectors, coupled to supercritical Carbon Dioxide (s-CO2) Brayton power cycle. The Dual Loop justification relies on gaining the synergies provided by the different heat transfer fluids properties. The oils advantages are related with the operating experience accumulated in numerous solar power plants deployed around the World, assuring the commercial equipment availability. Also the pipes metal corrosion with oil is much lower than with molten salt. The pipes material cost saving is significant with the oil alternative. The thermal oil main constraint is imposed by the maximum operating temperature (around 400 degrees C) for avoiding chemical decomposition and degradation, stablishing the plant threshold efficiency 37% due to Carnot principle. On the other hand the Solar Salt mixture (60%NaNO3-40%ICNO3) maximum operating temperature goes up to 550 degrees C, but the freezing point is stablished around 220 degrees C requiring pipes and equipment electrical heating for avoiding salts solidification at low temperature. Regarding the balance of plant, the sCO(2) power cycle is the most promising alternative to the actual Rankine power cycle for increasing the plant energy efficiency, reducing the solar collector aperture area and minimizing the equipment dimensions and civil work. Three Brayton cycles configurations with reheating were assessed integrated with the line-focusing Dual-Loop solar field: the simple Brayton cycle (SB), the Recompression cycle (RC), the Partial Cooling with Recompression cycle (PCRC), and the Recompression with Main Compression Intercooling (RCMCI). The power cycle operating thermodynamic parameters (split flow, reheating pressure, mass flow and pressure ratio) were optimized with unconstrained multivariable algorithms: SUBPLEX, UOBYQA and NEWUOA. The main conclusion deducted is the significant efficiency improvement when adopting the s-CO2 Brayton cycle in comparison. with the Rankine legacy solution. The Dual-Loop solar field integrated with a Rankine cycle provides a gross efficiency around 41.8%, but when coupling to s-CO2 Brayton RC or RCMCI the plant efficiency goes up to 50%. It was also demonstrated the beneficial effect of increasing the total heat exchangers (recuperators) conductance (UA) for optimizing the Brayton cycles efficiency and minimizing the solar field aperture area for a fixed power output, only limited by the minimum pinch point temperature in heat exchangers. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:这项研究的重点是提出将双回路太阳场与Dowtherm A和太阳盐作为抛物线或线性菲涅尔太阳能收集器中的传热流体的组合,并结合超临界二氧化碳(s-CO2)布雷顿功率循环。双回路调整依赖于获得不同传热流体特性提供的协同作用。石油的优势与在世界各地部署的众多太阳能发电厂中积累的运营经验有关,从而确保了商业设备的可用性。而且,管道对金属的油污腐蚀远低于对熔融盐的腐蚀。使用石油替代品可显着节省管道材料成本。导热油的主要约束条件是避免化学分解和降解的最高工作温度(约400摄氏度),由于卡诺原理使工厂的门槛效率提高了37%。另一方面,太阳能盐混合物(60%NaNO3-40%ICNO3)的最高工作温度升至550摄氏度,但凝固点稳定在220摄氏度左右,需要管道和设备进行电加热以避免盐在低温下凝固。关于工厂的平衡,sCO(2)功率循环是实际兰金功率循环的最有希望的替代方案,可以提高工厂的能源效率,减小太阳能收集器的开孔面积并最小化设备尺寸和土建工作。评估了三种带加热的布雷顿循环配置,并将其与聚焦于行的双环太阳能场相结合:简单的布雷顿循环(SB),再压缩循环(RC),部分制冷再压缩循环(PCRC)和主再压缩压缩中冷(RCMCI)。使用无约束多变量算法SUBPLEX,UOBYQA和NEWUOA优化了功率循环的运行热力学参数(分流,再加热压力,质量流量和压力比)。得出的主要结论是,与采用s-CO2布雷顿循环相比,效率显着提高。使用Rankine旧式解决方案。与朗肯循环集成的双环太阳能场的总效率约为41.8%,但当与s-CO2 Brayton RC或RCMCI耦合时,电站效率将高达50%。还证明了增加总换热器(换热器)电导(UA)的有益效果,以优化布雷顿循环效率并最小化固定功率输出的太阳场孔径面积,仅受换热器中的最小夹点温度限制。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号