首页> 外文期刊>International journal of hydrogen energy >Two-controlling mechanisms model for hydrogen desorption in the Li-4(NH2)(3)BH4 doped Mg(NH2)(2)-2LiH system
【24h】

Two-controlling mechanisms model for hydrogen desorption in the Li-4(NH2)(3)BH4 doped Mg(NH2)(2)-2LiH system

机译:Li-4(NH2)(3)BH4掺杂Mg(NH2)(2)-2LiH体系中氢解吸的两种控制机理模型

获取原文
获取原文并翻译 | 示例
       

摘要

The limiting step of the dehydrogenation process and the desorption kinetic model of the composite 0.7Mg(NH2)(2)-1.4LiH-0.2Li(4)(NH2)(3)BH4 under different hydrogen back pressures at low temperature (200 degrees C) were studied in this work. It was determined that a single mechanism model was not able to explain the behavior of the reaction at low and high reacted fractions simultaneously. A combination of two controlling mechanisms, which reproduce accurately the behavior of the system, was proposed. The rate equation deduced involves the contribution of a second grade Avrami model and a 3D diffusion model as a function of pressure and conversion. At low conversions, the limiting step of the reaction is the formation of the products. Once a thin layer of product is formed on the surface, the diffusion through it becomes the new limiting step. With pressure increase, the mechanism change occurs later during desorption due to the higher difficulty in creating nucleation points on a surface exposed to a higher concentration of hydrogen. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:复合材料0.7Mg(NH2)(2)-1.4LiH-0.2LiH(0.2)(NH2)(3)BH4在低温(200度)下不同的氢气背压下的脱氢过程限制步骤和解吸动力学模型C)在这项工作中进行了研究。已确定单一机理模型不能同时解释低和高反应馏分下反应的行为。提出了两种控制机制的组合,可以精确地重现系统的行为。推导的速率方程涉及作为压力和转换函数的二级Avrami模型和3D扩散模型的贡献。在低转化率下,反应的限制步骤是产物的形成。一旦产品的薄层形成在表面上,通过它的扩散就成为新的限制步骤。随着压力增加,由于在暴露于较高氢浓度的表面上形成成核点的难度更高,因此在解吸过程中机理发生得较晚。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2017年第9期|6127-6136|共10页
  • 作者单位

    Consejo Nacl Invest Cient & Tecn, Consejo Nacl Invest Cient & Tecn, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|CNEA, Ctr Atom Bariloche, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|Univ Nacl Cuyo, Inst Balseiro, Mendoza, Argentina;

    Consejo Nacl Invest Cient & Tecn, Consejo Nacl Invest Cient & Tecn, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|CNEA, Ctr Atom Bariloche, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|CNRS, Inst Neel, 25 Ave Martyrs, F-38042 Grenoble, France;

    Consejo Nacl Invest Cient & Tecn, Consejo Nacl Invest Cient & Tecn, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|CNEA, Ctr Atom Bariloche, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|Univ Nacl Cuyo, Inst Balseiro, Mendoza, Argentina;

    Consejo Nacl Invest Cient & Tecn, Consejo Nacl Invest Cient & Tecn, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|CNEA, Ctr Atom Bariloche, Av Bustillo 9500,R8402AGP, San Carlos De Bariloche, Rio Negro, Argentina|Univ Nacl Cuyo, Inst Balseiro, Mendoza, Argentina;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrogen storage; Amides; Kinetics; Controlling mechanism;

    机译:储氢;酰胺;运动学;控制机理;
  • 入库时间 2022-08-18 00:19:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号