首页> 外文期刊>International journal of hydrogen energy >Methane steam reforming thermally coupled with catalytic combustion in catalytic microreactors for hydrogen production
【24h】

Methane steam reforming thermally coupled with catalytic combustion in catalytic microreactors for hydrogen production

机译:甲烷蒸汽重整与催化微反应器中的催化燃烧热耦合以生产氢气

获取原文
获取原文并翻译 | 示例
           

摘要

Growing interest in small-scale, portable energy devices has necessitated the development of micro-scale fuel processing systems. Steam reforming of methane coupled with methane catalytic combustion in catalytic microreactors for hydrogen production was studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effect of channel height, inlet steam-to-carbon ratio, wall thermal conductivity, catalyst, and flow rate were explored to provide guidelines for optimal design. Operating diagrams were constructed, and different operating lines were mapped out. It was shown that stable and efficient reactor operation is feasible at millisecond contact times with high conversion, but very careful design is crucial in achieving this. The steam reforming process is kinetically-controlled, whereas the catalytic combustion process is mixed kinetically/transport-controlled. For system design, the dimensions of the combustion channel must be picked to minimize transfer limitations. Operation at lower inlet steam-to-carbon ratio increases the power output at lower temperatures. The construction materials depend on the overall system optimization. Low conductivity materials allow higher conversions and power outputs at the expense of hot spots, and moderate-conductivity materials make a good compromise between conversion and temperature. Furthermore, a performance comparison of rhodium and nickel suggested that it is vital to select the reforming catalyst. Finally, a simple operation strategy was proposed for obtaining maximum thermal efficiency, ensuring high conversions and reasonable wall isothermicity. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:对小型便携式能源设备的兴趣日益增长,因此有必要开发微型燃料处理系统。研究了甲烷的蒸汽重整,并在催化微反应器中进行甲烷催化燃烧以生产氢气,该方法使用了二维化学流体动力学(CFD)模型,具有详细的化学和运输原理。研究了通道高度,入口蒸汽与碳之比,壁导热率,催化剂和流速的影响,为优化设计提供了指导。绘制了操作图,并绘制了不同的操作线。结果表明,在毫秒接触时间以高转化率进行稳定高效的反应器操作是可行的,但是非常谨慎的设计对于实现这一目标至关重要。蒸汽重整过程是动力学控制的,而催化燃烧过程是动力学/运输控制的混合。对于系统设计,必须选择燃烧通道的尺寸以最小化传输限制。在较低的入口蒸汽碳比下运行可在较低温度下增加功率输出。建筑材料取决于整个系统的优化。低电导率的材料允许以较高的热点为代价实现更高的转换和功率输出,而中等电导率的材料则可以很好地兼顾转换和温度。此外,铑和镍的性能比较表明选择重整催化剂至关重要。最后,提出了一种简单的操作策略,以获得最大的热效率,确保高转化率和合理的壁等温性。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号