首页> 外文期刊>International journal of hydrogen energy >Strain and stress: New insights into hydride growth of U-Nb alloys
【24h】

Strain and stress: New insights into hydride growth of U-Nb alloys

机译:应变和应力:U-Nb合金氢化物生长的新见解

获取原文
获取原文并翻译 | 示例
       

摘要

To determine the contributions of elastic strain energy to chemical driving force of uranium hydride growth, an elastic fields model was set up by a spherical hydride particle growing at sub-surface of parent metal, which was used to interpret strain energy influence on the evolution of microstructure and kinetics characteristics of the hydride precipitates. The results showed that strain energy during hydride expansile growth in the matrix is considerably different for the three U materials. When hydride grows, the order of the strain energy value is U-5.7%Nb U U-2.5%Nb(mass fraction), which indicated that the U-2.5%Nb alloy is the most susceptible to hydrogen corrosion, followed by U, while U-5.7%Nb is the most resistant to hydrogen corrosion basing on reaction activation theory. Agreement of calculated strain energy with experimental results of hydride growth kinetics showed that the model in this work is correct, in which the large strain energy from volume change during hydride growth plays an important role in determination of growth kinetics. In addition to strain energy calculation, the stress distribution associated with hydride precipitate was used to interpret the interaction between hydride pattern and stress. The study provides quantificational evidences to understand the association of strain energy and stress with hydride of metals, which will lead to novel process opportunities. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:为了确定弹性应变能对氢化铀生长的化学驱动力的贡献,通过在母体金属下表面生长的球形氢化物颗粒建立了弹性场模型,该模型用来解释应变能对金属铀演化的影响。氢化物沉淀的微观结构和动力学特征。结果表明,对于三种U材料,基质中氢化物可膨胀生长期间的应变能显着不同。当氢化物生长时,应变能值的顺序为U-5.7%Nb> U> U-2.5%Nb(质量分数),这表明U-2.5%Nb合金最容易受到氢腐蚀,其次是根据反应活化理论,U-5.7%Nb对氢腐蚀的抵抗力最大。计算出的应变能与氢化物生长动力学实验结果的吻合表明,该工作模型是正确的,其中氢化物生长期间体积变化产生的较大应变能在确定生长动力学中起着重要作用。除了计算应变能外,还使用与氢化物沉淀有关的应力分布来解释氢化物模式与应力之间的相互作用。该研究提供了量化的证据,以了解应变能和应力与金属氢化物的关系,这将带来新的工艺机会。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2018年第30期|13990-13998|共9页
  • 作者单位

    China Acad Engn Phys, Inst Mat, Huafeng St,POB 9071-13, Jiangyou 621907, Sichuan, Peoples R China;

    China Acad Engn Phys, Inst Mat, Huafeng St,POB 9071-13, Jiangyou 621907, Sichuan, Peoples R China;

    China Acad Engn Phys, Inst Mat, Huafeng St,POB 9071-13, Jiangyou 621907, Sichuan, Peoples R China;

    China Acad Engn Phys, Inst Mat, Huafeng St,POB 9071-13, Jiangyou 621907, Sichuan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    U-Nb alloy; Hydride; Strain energy; Stress; Hydride growth model;

    机译:U-Nb合金氢化物应变能应力氢化物生长模型;
  • 入库时间 2022-08-18 00:18:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号