首页> 外文期刊>International journal of hydrogen energy >Effect of iodine precipitation on HI separation subsection in sulfur-iodine cycle for hydrogen production
【24h】

Effect of iodine precipitation on HI separation subsection in sulfur-iodine cycle for hydrogen production

机译:碘沉淀对硫碘循环制氢中HI分离段的影响

获取原文
获取原文并翻译 | 示例
       

摘要

As a critical subsection in the sulfur-iodine (SI) thermochemical cycle, HI concentration and separation must cope with the pseudo-azeotropy of HIx (HI-I-2-H2O) and excess iodine in HIx solution. Although electro-electrodialysis (EED) coupled with conventional distillation is a validated method of HI separation from HIx solution in the SI process, the iodine deposition, resulting from changes in temperature and HI molality in HIx solution, can lead clogged flow channels of the EED anode and other tubes. A precipitator can address this problem by recovering excess iodine from HIx solution after the HIx purification column. The energy duty and required input flow rate per mole HI was investigated in this study using a process flowsheet simulation. A decrease in iodine concentration in the streams to EED could reduce cell duty effectively. An increase in HI molality in the EED cathode outlet resulted in an increase in EED duty; however, the amplitude was slight. The iodine molar concentration in the feed of the distillation column exhibited an appreciable influence on the distillation duty. However, with an increase in distillation column pressure, the effect of diminished iodine in feed on the HI distillate duty continued to decline. To assess the utilization of an iodine precipitator in the HI separation subsection, the energy demands and required input flow rates of three different flowsheets were calculated using Aspen Plus and Microsoft Office Excel. Results indicated that the flowsheet that only recovered iodine in the stream to the EED anode chamber exhibited the least HI separation duty and the lowest required input flow rate. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:作为硫碘(SI)热化学循环中的关键部分,HI的浓缩和分离必须解决HIx(HI-I-2-H2O)的拟共沸和HIx溶液中过量碘的问题。尽管电渗析(EED)与常规蒸馏相结合是在SI工艺中从HIx溶液中分离出HI的一种有效方法,但是由于HIx溶液中温度和HI摩尔浓度的变化而导致的碘沉积会导致EED的流道堵塞阳极和其他管。除尘器可以通过在HIx纯化柱后从HIx溶液中回收过量的碘来解决此问题。在这项研究中,使用工艺流程图模拟研究了每摩尔HI的能量负荷和所需的输入流速。进入EED的物流中碘浓度的降低可有效降低电池负荷。 EED阴极出口的HI摩尔浓度的增加导致EED占空比的增加;但是,幅度很小。蒸馏塔进料中的碘摩尔浓度对蒸馏负荷表现出明显的影响。然而,随着蒸馏塔压力的增加,进料中碘的减少对HI馏出物的影响持续下降。为了评估HI分离小节中碘沉淀器的利用率,使用Aspen Plus和Microsoft Office Excel计算了三种不同流程图的能量需求和所需的输入流速。结果表明,仅将流中的碘回收到EED阳极室的流程图显示出最低的HI分离负荷和最低的所需输入流量。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2018年第24期|10896-10904|共9页
  • 作者单位

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sulfur-iodine cycle; Hydrogen production; HI separation; Iodine precipitation; Heat duty;

    机译:硫碘循环产氢HI分离碘沉淀热负荷;
  • 入库时间 2022-08-18 00:18:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号