...
首页> 外文期刊>International journal of hydrogen energy >Photo-fermentative hydrogen production by Rhodopseudomonas palustris CGA009 in the presence of inhibitory compounds
【24h】

Photo-fermentative hydrogen production by Rhodopseudomonas palustris CGA009 in the presence of inhibitory compounds

机译:通过罗多麦莫纳斯·帕特鲁斯CGA009在存在抑制化合物中的光发酵氢

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This study investigated Rhodopseudomonas palustris CGA009 biohydrogen production from compounds commonly found in lignocellulosic steam explosion hydrolysate, by examining the effect of individual inhibitory phenolic and furan compounds found in hydrolysates, under photo-fermentative anaerobic conditions. Since lignocellulose is often converted into ethanol via yeast-mediated fermentation, the tolerance of R. palustris CGA009 towards ethanol inhibition was also tested at a concentration range of 0.25-14% (v/v) under anaerobic photo-fermentative conditions. Hydrogen production was enhanced by compounds such as syringaldehyde (0.03 g/L), which accumulated total hydrogen of 960 mL over the cultivation period. In contrast, a reduction in hydrogen production of 1.4 fold was observed in vanillin-containing solutions (0.43 g/L), which obtained accumulated total hydrogen of 576 mL. Increasing ethanol concentrations reduced hydrogen production, but cell growth was not affected up to 1% (v/v), a fairly low concentration. R. palustris CGA009 can tolerate comparatively high concentrations of phenolic compounds, suggesting its use for lignocellulose hydrolysate detoxification and hydrogen production. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本研究通过检查水解产物中的单个抑制酚类和呋喃化合物的效果,研究了从木质纤维素蒸汽爆炸水解产物中常见的化合物的藜齐CGA009生物氢生产。由于木质纤维素通常通过酵母介导的发酵转化为乙醇,因此在厌氧发酵条件下的0.25-14%(v / v)的浓度范围内也在0.25-14%(v / v)的浓度范围内进行R.Palustris CGA009的耐受性。通过诸如辛醛(0.03g / L)的化合物增强了氢气,其在培养期上累积了960ml的总氢。相反,在含香草蛋白的溶液(0.43g / L)中观察到氢产生1.4倍的降低,其获得576ml的累积总氢气。增加乙醇浓度降低了氢气产生,但细胞生长不受影响至1%(v / v),浓度相当低。 R.Palustris CGA009可以耐受相对高浓度的酚类化合物,表明其用于木质纤维素水解液解毒和氢气产生的用途。 (c)2021氢能出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号