...
首页> 外文期刊>International journal of hydrogen energy >Mathematical modeling of novel porous transport layer architectures for proton exchange membrane electrolysis cells
【24h】

Mathematical modeling of novel porous transport layer architectures for proton exchange membrane electrolysis cells

机译:质子交换膜电解细胞新型多孔运输层架构的数学建模

获取原文
获取原文并翻译 | 示例

摘要

Thin foil based porous transport layers (PTLs) that contain highly structured pore arrays have shown promise as anode PTLs in proton exchange membrane electrolysis cells. These novel PTLs, fabricated with advanced manufacturing techniques, produce thin, tunable, multifunctional layers with reduced flow and interfacial resistances and high thermal and electric conductivities. To further optimize their design, it is important to understand their fundamental impact on the transport of protons, electrons, and liquid/vapor mixtures in the electrode. In this work, we develop a two-dimensional multiphysics model to simulate the coupled electrochemistry and multiphase transport in an electrolysis cell operated with the novel PTL architecture. The results show that larger pores improve access of water to the anode catalyst layer, which is beneficial for both the oxygen evolution reaction and membrane hydration. Larger pore sizes also improve oxygen gas transport from the catalyst layer, because generated oxygen gas is forced to travel in-plane through the anode catalyst layer until it reaches a pore opening that is connected to a channel. The discussed results confirm that the proposed thin foil based PTLs are fundamentally different from conventional PTLs, such as felts or layered meshes. The model developed in this work also provides generalizable insight into fundamental PEMEC phenomena, such as the compe-tition between liquid and gas phase transport, membrane hydration and water manage-ment, and nonuniform electrochemical reactions, which are processes relevant to all PEMEC designs. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:含有高结构化孔径阵列的薄箔的多孔传输层(PTL)已经显示为质子交换膜电解细胞中的阳极PTL。这些新型PTLS,具有先进的制造技术,生产薄,可调谐,多功能层,具有减少的流动和界面电阻和高热和电导率。为了进一步优化它们的设计,重要的是要了解它们对电极中质子,电子和液体/蒸气混合物的运输的根本影响。在这项工作中,我们开发了一种二维多体模型,以模拟用新型PTL架构操作的电解槽中的耦合电化学和多相输送。结果表明,较大的孔改善了水的进入阳极催化剂层,这对于氧气进化反应和膜水合有益。较大的孔径也改善了来自催化剂层的氧气输送,因为产生的氧气被迫穿过阳极催化剂层在平面内行进,直到它到达连接到通道的孔开口。所讨论的结果证实,所提出的薄箔的PTL与常规PTL(例如毡或分层网)根本上不同。本作作品中开发的模型还提供了完全洞察的基础PEMEC现象,例如液体和气体相输送,膜水合和水管理和非均匀电化学反应之间的组合 - 是与所有PEMEC设计相关的过程。 (c)2021氢能出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号