...
首页> 外文期刊>International journal of hydrogen energy >Fabrication of heterostructured UIO-66-NH_2/CNTs with enhanced activity and selectivity over photocatalytic CO_2 reduction
【24h】

Fabrication of heterostructured UIO-66-NH_2/CNTs with enhanced activity and selectivity over photocatalytic CO_2 reduction

机译:具有增强活性的异质UIO-66-NH_2 / CNT和光催化CO_2减少的选择性

获取原文
获取原文并翻译 | 示例
           

摘要

Developing photocatalysts with superior efficiency and selectivity is an important issue for photocatalytic converting CO2. Hierarchically heterostructured one-dimensional nanomaterials represent a kind of promising catalysts for photocatalytic CO2 reduction on account of the high surface area and synthetic effect between different components. Herein, we synthesized UIO-66-NH2/carbon nanotubes (CNTs) heterostructures via a hydrothermal method, and investigated their photocatalytic performance. The element mapping, X-ray diffraction, and X-ray photoelectron spectroscopy collectively confirmed that the UIO-66-NH2 was successfully loaded on the surface of the CNTs. The specific surface area of the UI0-66-NH2/CNTs is 1.5 times higher than that of UIO-66-NH2. The photocurrent and electrochemical impedance spectroscopy measurements showed that the CNTs could enhance the electron mobility and reduce the recombination of photogenerated electronhole pairs, which was also confirmed by the Photoluminescence spectroscopy (PL). The CNTs can improve the conductivity of composites and the dispersion of UIO-66-NH2, exposing more active sites, therefore the UIO-66-NH2 can increase the absorption of carbon dioxide and thus enhance the selectivity. The composites remarkably promoted the separation and transition of electrons and thus improved the photocatalytic efficiency of CO2 reduction. More importantly, it was found that the as-prepared composites suppress the hydrogen generation reaction during the CO2 reduction process. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:具有卓越效率和选择性的光催化剂是光催化转换CO2的重要问题。分层型异质结构一维纳米材料代表了一种用于光催化二氧化碳的有希望的催化剂,但由于不同组分之间的高表面积和合成效应,对光催化二氧化碳还原减少。这里,我们通过水热法合成UIO-66-NH2 /碳纳米管(CNT)异质结构,并研究了它们的光催化性能。元素映射,X射线衍射和X射线光电子能谱共同证实,UIO-66-NH2成功地装载在CNT的表面上。 UI0-66-NH2 / CNT的比表面积比UIO-66-NH2高1.5倍。光电流和电化学阻抗光谱测量结果表明,CNT可以增强电子迁移率并减少光致电孔对的重组,其也通过光致发光光谱(PL)证实。 CNT可以改善复合材料的电导率和UIO-66-NH2的分散,暴露更多的活性位点,因此UIO-66-NH2可以增加二氧化碳的吸收,从而提高选择性。复合材料显着促进了电子的分离和转变,从而提高了CO2还原的光催化效率。更重要的是,发现AS制备的复合材料抑制了CO 2还原过程中的氢气产生反应。 (c)2020氢能量出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第55期|30634-30646|共13页
  • 作者单位

    Xi An Jiao Tong Univ Dept Environm Sci & Engn State Key Lab Multiphase Flow Power Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Dept Environm Sci & Engn State Key Lab Multiphase Flow Power Engn Xian 710049 Peoples R China|Xi An Jiao Tong Univ Sch Sci Dept Appl Chem State Key Lab Elect Insulat & Powe MOE Key Lab Nonequilibrium Synth & Modulat Conden Xian 710049 Peoples R China|Xi An Jiao Tong Univ Suzhou Inst Suzhou 215123 Peoples R China;

    Xian Univ Technol State Key Lab Ecohydraul Northwest Arid Reg Xian 710048 Peoples R China;

    Xi An Jiao Tong Univ Dept Environm Sci & Engn State Key Lab Multiphase Flow Power Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Dept Environm Sci & Engn State Key Lab Multiphase Flow Power Engn Xian 710049 Peoples R China;

    Xian Univ Technol State Key Lab Ecohydraul Northwest Arid Reg Xian 710048 Peoples R China;

    Univ Wollongong ARC Ctr Excellence Electromat Sci Intelligent Polymer Res Inst Wollongong NSW 2522 Australia;

    Xi An Jiao Tong Univ Dept Environm Sci & Engn State Key Lab Multiphase Flow Power Engn Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Carbon nanotubes; Photocatalytic activity; Selectivity; UIO-66-NH2; CO2 reduction; HCOOH;

    机译:碳纳米管;光催化活性;选择性;UIO-66-NH2;CO2减少;HCOOH;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号