...
首页> 外文期刊>International journal of hydrogen energy >Sonochemical synthesis, characterization and investigation of the electrochemical hydrogen storage properties of TlPbI_3/Tl_4PbI_6 nanocomposite
【24h】

Sonochemical synthesis, characterization and investigation of the electrochemical hydrogen storage properties of TlPbI_3/Tl_4PbI_6 nanocomposite

机译:TLPBI_3 / TL_4PBI_6纳米复合材料的电化学储氢性能的多种子胞化合成,表征及研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Hydrogen storage is an important technology for the promotion of fuel cell and hydrogen technologies in applications such as transportation, portable power, and stationary power. Hydrogen possesses the most energy per mass of each fuel; despite its low room temperature density leads to a low energy per unit volume, since demanding the improvement of high-level storage techniques that possess the potential for higher energy density. For this regard, novel nanocomposite (TlPbI3/Tl4PbI6) has been fabricated for electrochemical hydrogen storage by the importance of the optimum state to obtain higher efficiency. TlPbI3/Tl4PbI6 nanocomposite was prepared by a facile and low-cost sonochemical pathway. The sonochemical method performs a significant figure in the synthesis of nanostructures with large surface area and tiny crystal size, characteristics that are useful for electrochemical hydrogen storage. The influence of multiple factors, including stoichiometric ratios, types of surface-active agents, time, and power of sonication was studied on the structure, purity, shape, size, and uniformity of the samples. The electrochemical characteristics of the TlPbI3/Tl4PbI6 were examined via charge-discharge chronopotentiometry procedures in an alkaline medium. The discharge capacity of TlPbI3/Tl4PbI6 with particle shape was evaluated 61.45 mAhg(-1) after 15 cycles. The discharge capacity nanocomposite with rod-like structure was calculated 99.06 mAhg(-1). The results confirm that the hydrogen storage capacity for rod-like samples is higher than particle shape nanocomposite, and the capacity reduces by enhancing the diameters of rods. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:储氢是促进燃料电池和氢技术的重要技术,如运输,便携式动力和固定电力。氢拥有每种燃料量的最多的能量;尽管其低室温密度可导致每单位体积的低能量,因为要求提高具有更高能量密度潜力的高级存储技术。为这方面,通过最佳状态的重要性来制造新的纳米复合材料(TLPBI3 / TL4PBI6),以获得更高的效率的电化学储氢。通过容易和低成本的儿童化学途径制备TLPBI3 / TL4PBI6纳米复合材料。 Sonochemical方法在具有大表面积和微晶体尺寸的纳米结构的合成中对纳米结构的合成具有重要人物,可用于电化学储氢的特性。在样品的结构,纯度,形状,尺寸和均匀性上研究了多种因素,包括化学计量比,表面活性剂类型,表面活性剂的类型和超声功能的影响。通过碱性介质中的电荷 - 放电时间计量方法检查TLPBI3 / TL4PBI6的电化学特性。在15个循环后,评价具有颗粒形状的TLPBI3 / TL4PBI6的放电容量61.45mAhg(-1)。用棒状结构的放电容量纳米复合材料计算99.06mAhg(-1)。结果证实,棒状样品的储氢容量高于颗粒形状纳米复合材料,并且通过增强棒的直径来降低该容量。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号