首页> 外文期刊>International journal of hydrogen energy >Superhydrophilic 3D peony flower-like Mo-doped Ni_2S_3@NiFe LDH heterostructure electrocatalyst for accelerating water splitting
【24h】

Superhydrophilic 3D peony flower-like Mo-doped Ni_2S_3@NiFe LDH heterostructure electrocatalyst for accelerating water splitting

机译:超硫酸三维牡丹花样Mo-掺杂Ni_2S_3 @ NiFe LDH异质结构电催化剂加速水分裂

获取原文
获取原文并翻译 | 示例
           

摘要

Constructing highly efficient nonprecious electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential to improve the efficiency of overall water splitting, but still remains lots of obstacles. Herein, a novel 3D peony flower-like electrocatalyst was synthesized by employing Mo-Ni2S3/NF nanorod arrays as scaffolds to in situ growth ultrathin NiFe LDH nanosheets (Mo-Ni2S3@NiFe LDH). As expected, the novel peony flower-like Mo-Ni2S3@NiFe LDH displays superior electrocatalytic activity and stability for both OER and HER in alkaline media. Low overpotentials of only 228 mV and 109 mV are required to achieve the current densities of 50 mA cm(-2) and 10 mA cm(-2) for OER and HER, respectively. Additionally, the material remarkably accelerates water splitting with a low voltage of 1.54 V at 10 mA cm(-2), which outperforms most transition metal electrodes. The outstanding electrocatalytic activity benefits from the following these features: 3D peony flower-like structure with rough surface provides more accessible active Water splitting sites; superhydrophilic surfaces lead to the tight affinity between electrode with electrolyte; metallic Ni substrate and highly conductive Mo-Ni2S3 nanorods scaffold together with offer fast electron transfer; the nanorod arrays and porous Ni foam accelerate gas bubble release and ions transmission; the strong interfacial effect between Mo- doped Ni3S2 and NiFe LDH shortens transport pathway, which are benefit for electrocatalytic performance enhancement. This work paves a new avenue for construction and fabrication the 3D porous structure to boost the intrinsic catalytic activities for energy conversion and storage applications. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:构建高效的氧气进化反应(oer)和氢进化反应(她)是必不可少的,以提高整体水分裂的效率,但仍然存在很多障碍。这里,通过使用Mo-Ni2S3 / NF纳米棒阵列作为支架,以原位生长的超薄NIFE LDH纳米液(Mo-Ni2S3 @ NiFe LDH)合成了一种新的3D牡丹花状电催化剂。正如预期的那样,新颖的牡丹花样Mo-Ni2S3 @ NiFe LDH在碱性介质中显示出优异的电催化活性和欧尔和她的稳定性。对于OER和她,仅需要228 mV和109 mV的低过电量,以实现50 mA cm(-2)和10 mA cm(-2)的电流密度。另外,该材料在10mA cm(-2)的低电压下显着加速水分裂,其越高,这使得大多数过渡金属电极优于大多数过渡金属电极。出色的电催化活性受益于以下这些特点:3D牡丹花状结构,粗糙表面提供了更可达的有源水分裂部位;超硫酸化表面导致电极与电解质之间的紧密亲和性;金属Ni衬底和高导电的Mo-Ni2S3纳米ODS支架与提供快速电子转移一起;纳米棒阵列和多孔镍泡沫加速气泡释放和离子透射;掺杂Ni3S2和NiFe LDH之间的强烈界面效应缩短了运输途径,这是用于电催化性能增强的有益。这项工作铺设了一个新的施工和制造3D多孔结构的途径,以提高能量转换和储存应用的内在催化活性。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2021年第7期|5169-5180|共12页
  • 作者单位

    HeXi Univ Coll Chem & Chem Engn Key Lab Hexi Corridor Resources Utilizat Gansu Univ Zhangye 734000 Gansu Peoples R China|Northwest Normal Univ Key Lab Ecoenvironm Related Polymer Mat Key Lab Polymer Mat Gansu Prov Minist Educ Coll Chem & Chem Engn Lanzhou Gansu Peoples R China;

    HeXi Univ Coll Chem & Chem Engn Key Lab Hexi Corridor Resources Utilizat Gansu Univ Zhangye 734000 Gansu Peoples R China;

    HeXi Univ Coll Chem & Chem Engn Key Lab Hexi Corridor Resources Utilizat Gansu Univ Zhangye 734000 Gansu Peoples R China;

    HeXi Univ Coll Chem & Chem Engn Key Lab Hexi Corridor Resources Utilizat Gansu Univ Zhangye 734000 Gansu Peoples R China;

    Northwest Normal Univ Key Lab Ecoenvironm Related Polymer Mat Key Lab Polymer Mat Gansu Prov Minist Educ Coll Chem & Chem Engn Lanzhou Gansu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mo-Ni2S3@NiFe LDH; 3D peony flower-like structure; Synergistic effect; Superhydrophilicity; Water splitting;

    机译:mo-ni2s3 @ nife ldh;3d牡丹花样;协同效果;超级水分;水分裂;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号