首页> 外文期刊>International journal of hydrogen energy >Understanding CO_2 electrochemical reduction kinetics of mixed-conducting cathodes by the electrical conductivity relaxation method
【24h】

Understanding CO_2 electrochemical reduction kinetics of mixed-conducting cathodes by the electrical conductivity relaxation method

机译:通过电导率松弛方法了解混合导电阴极的CO_2电化学减少动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Electrochemical reduction reaction is an important approach to utilize CO2 and convert it into valuable products. Exceptional reaction kinetics at a high temperature of solid oxide electrolysis cells (SOECs) attracts particular attention. In this work, we propose to investigate CO2-RR kinetics using a new theoretical method based on the electrical conductivity relaxation (ECR) technique on a typical mixed-conducting Sr2Fe1.5Mo0.5O6-delta (SFM) electrode. Three kinetic parameters that are commonly adopted in the typical electrochemical test experiments consisting of overpotential, current density and area-specific resistance (ASR) are derived. The overpotential resulted from the difference in the oxygen partial pressure is caused by the change of CO2 partial pressure, while current density from the surface reaction rate constant. Accordingly, area-specific resistance, as well as overpotential-current density relationship, can be derived. We believe that this work brings a new method to study the kinetic process of CO2 electrolysis and to evaluate the electrocatalyst activity of developed new electrode materials as well as to benefit the designing of novel electrode electrocatalysts for highly efficient solid oxide electrolysis cells. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:电化学还原反应是利用二氧化碳的重要方法并将其转化为有价值的产品。在高温实心氧化物电解细胞(SOECs)的特殊反应动力学吸引了特别注意。在这项工作中,我们建议使用基于典型的混合传导SR2FE1.5MO6-DELTA(SFM)电极的电导率松弛(ECR)技术的新的理论方法来研究CO2-RR动力学。推导出一种典型的电化学测试实验中通常采用的三种动力学参数,其由过电流,电流密度和面积特异性抗性(ASR)组成。由于二氧化碳部分压力的变化而导致来自氧气分压的差异,而来自表面反应速率恒定的电流密度引起的过电位。因此,可以推导出面积特异性电阻,以及过电流密度关系。我们认为,这项工作带来了一种研究CO2电解动力学过程的新方法,并评估开发的新电极材料的电催化剂活性以及有益于高效固体氧化物电解细胞的新型电极电催化剂的设计。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2021年第15期|9646-9652|共7页
  • 作者单位

    Shenzhen Univ Coll Chem & Environm Engn Shenzhen 518060 Guangdong Peoples R China|Shenzhen Univ Minist Educ Guangdong Prov Coll Phys & Optoelect Engn Key Lab Optoelect Devices & Syst Shenzhen 518060 Peoples R China;

    Shenzhen Univ Coll Chem & Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem & Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem & Environm Engn Shenzhen 518060 Guangdong Peoples R China|Shenzhen Univ Minist Educ Guangdong Prov Coll Phys & Optoelect Engn Key Lab Optoelect Devices & Syst Shenzhen 518060 Peoples R China;

    Shenzhen Univ Coll Chem & Environm Engn Shenzhen 518060 Guangdong Peoples R China|Shenzhen Univ Shenzhen Key Lab New Lithium Ion Batteries & Meso Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem & Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem & Environm Engn Shenzhen 518060 Guangdong Peoples R China|Shenzhen Univ Shenzhen Key Lab New Lithium Ion Batteries & Meso Shenzhen 518060 Guangdong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CO2 reduction; Solid oxide electrolysis cell; Electrical conductivity relaxation; Electrocatalyst; Kinetics;

    机译:CO2减少;固体氧化物电解槽;电导率松弛;电催化剂;动力学;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号