首页> 外文期刊>International journal of hydrogen energy >Anode structure with double-catalyst layers for improving the direct ethanol fuel cell performance
【24h】

Anode structure with double-catalyst layers for improving the direct ethanol fuel cell performance

机译:具有双催化剂层的阳极结构,用于改善直接乙醇燃料电池性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The conventional anode design of direct ethanol fuel cells (DEFCs) usually encounter a problem on the performance stability and ethanol mass transport, i.e., ethanol crossover. Aiming to alleviate these issues, in this study, the anode with different configurations for DEFC was designed and fabricated with different catalyst layer (CL) and microporous layer (MPL) arrangements. The four types of membrane electrode assembly (MEA) is named with MEA-1 (with pretreated carbon paper (PCP) and PtCL), MEA-2 (with PCP, MPL and PtCL), MEA-3 (with PCP, MPL, PtCL and PdCL) and MEA-4 (with PCP, MPL, PtCL, MPL and PdCL). The performance, stability and ethanol crossover of MEAs were tested and measured for continuous long-term operation for 120 h, while the morphological characterization was analyzed. Based on the results, power density for each MEA decreased with time, while ethanol crossover increased gradually. The MEA-3 with additional PdCL shows a highest performance and stability about 20 W/m(2), and has a lowest ethanol crossover's magnitude. The highest ethanol crossover was obtained using MEA-1 at 3.7 mg/m(2).s. Higher ethanol crossover had caused low stability of DEFC performance which result higher irreversible degradation. Moreover, based on characterization, elemental mapping and EDX illustrated phenomena of membrane swelling, delamination of electrode from membrane, and CL loss after stability test for 5 days for all MEAs. The significance of anode structure design was proven in this current study. The anode design of double-layered CL has potential to use at anode structure to reduce ethanol crossover rate, thereby improving DEFC performance and stability. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:常规乙醇燃料电池(DEFC)的常规阳极设计通常遇到性能稳定性和乙醇质量转运的问题,即乙醇交叉。旨在减轻这些问题,在本研究中,设计和制造具有不同配置的阳极,并用不同的催化剂层(CL)和微孔层(MPL)布置。四种类型的膜电极组件(MEA)用MEA-1命名(用预处理的碳纸(PCP)和PTCL),MEA-2(用PCP,MPL和PTCL),MEA-3(用PCP,MPL,PTCL和Pdcl)和MEA-4(用PCP,MPL,PTCL,MPL和PDCL)。测量的性能,稳定性和乙醇横跨测试和测量为120小时的连续长期操作,同时分析了形态学特性。基于结果,每次MEA的功率密度随时间降低,而乙醇交叉逐渐增加。 MEA-3具有额外的PDCl显示出约20W / m(2)的最高性能和稳定性,并且具有最低的乙醇交叉幅度。使用3.7mg / m(2)的MEA-1获得最高乙醇交叉。更高的乙醇交叉引起了DEFC性能的低稳定性,从而导致更高的不可逆降解。此外,基于表征,元素映射和EDX所示的膜溶胀现象,电极的分层来自膜,并且稳定性试验后的CL损失为所有测量的5天。在本前研究中证明了阳极结构设计的重要性。双层CL的阳极设计具有在阳极结构上使用以降低乙醇交叉速率,从而提高DEFC性能和稳定性。 (c)2019氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第42期|22302-22314|共13页
  • 作者单位

    Univ Kebangsaan Malaysia Fac Engn & Built Environm Program Chem & Proc Engn Ukm Bangi 43600 Selangor Malaysia;

    Univ Kebangsaan Malaysia Fuel Cell Inst Ukm Bangi 43600 Selangor Malaysia;

    Univ Kebangsaan Malaysia Fac Engn & Built Environm Program Chem & Proc Engn Ukm Bangi 43600 Selangor Malaysia|Univ Kebangsaan Malaysia Fuel Cell Inst Ukm Bangi 43600 Selangor Malaysia|Univ Kebangsaan Malaysia Fac Engn & Built Environm Res Ctr Sustainable Proc Technol CESPRO Ukm Bangi 43600 Selangor Malaysia;

    Univ Kebangsaan Malaysia Fuel Cell Inst Ukm Bangi 43600 Selangor Malaysia;

    Univ Kebangsaan Malaysia Fac Engn & Built Environm Program Chem & Proc Engn Ukm Bangi 43600 Selangor Malaysia|Univ Kebangsaan Malaysia Fuel Cell Inst Ukm Bangi 43600 Selangor Malaysia|Univ Kebangsaan Malaysia Fac Engn & Built Environm Res Ctr Sustainable Proc Technol CESPRO Ukm Bangi 43600 Selangor Malaysia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anode design; Electrode structure; Ethanol crossover; Stability; Degradation;

    机译:阳极设计;电极结构;乙醇交叉;稳定性;降解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号