首页> 外文期刊>International journal of hydrogen energy >Design of experiments and analysis of dual fluidized bed gasifier for syngas production: Cold flow studies
【24h】

Design of experiments and analysis of dual fluidized bed gasifier for syngas production: Cold flow studies

机译:合成气生产双流化床气化器的实验和分析设计:冷流研究

获取原文
获取原文并翻译 | 示例
           

摘要

Biomass gasification is a thermo-chemical process widely accepted as a future technology for syngas production. Numerous types of gasification systems have been proposed and studied in the past. Recent developments have shown that Dual Fluidized Bed (DFB) gasifier are commercially more attractive for production of the hydrogen-rich syngas as compared to others. DFB gasification system is very complex in construction and operation. Hence, a detailed understanding of hydrodynamics in such systems is essential for optimum design and scale-up. Hydrodynamics of DFB gasifier mainly depends on the Solid Circulation Rate (SCR). SCR is governed by riser velocity, gasifier velocity, and loop seal velocities. In present work, Central Composite Rotatable Design (CCRD) based Response Surface Method (RSM) was employed to determine the effect of riser velocity, gasifier velocity, recycle chamber velocity, supply chamber velocity, and vertical supply chamber velocity and their interaction on the SCR. Adequacy of regression model developed from RSM was confirmed using ANOVA analysis. The value of coefficient of determination (R-2) of the model was 0.9729, which confirms model represents the experimental results satisfactorily. Riser and recycle chamber velocity were found to be most significant parameters, plays an important role in SCR in DFB gasifier. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:生物质气化是一种热化学过程,广泛接受作为合成气生产的未来技术。已经提出了许多类型的气化系统并在过去研究过。最近的发展已经表明,双流量化床(DFB)气化器与其他相比之相比,双流量化床(DFB)气化器具有商业上更具吸引力的富含氢的合成气。 DFB气化系统在施工和操作方面非常复杂。因此,在这种系统中对流体动力学的详细了解对于最佳设计和扩展至关重要。 DFB气化器的流体动力学主要取决于固体循环速率(SCR)。 SCR由提升管速度,气化器速度和环封速度控制。在目前的工作中,采用基于中央复合可旋转设计(CCRD)响应面法(RSM)来确定提升管速度,气化器速度,再循环室速度,供应室速度和垂直供应室速度的影响及其对SCR的互动。使用ANOVA分析确认从RSM开发的回归模型的充分性。该模型的测定系数(R-2)的值为0.9729,证实模型代表了实验结果令人满意。 Riser和Recycle腔室速度被发现是最重要的参数,在DFB气化炉中起着重要作用。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号