首页> 外文期刊>International journal of hydrogen energy >Electrochemical modelling of ammonia synthesis in molten salt medium for renewable fuel production using wind power
【24h】

Electrochemical modelling of ammonia synthesis in molten salt medium for renewable fuel production using wind power

机译:使用风力发电的可再生燃料生产中氨合成氨合成的电化学建模

获取原文
获取原文并翻译 | 示例
           

摘要

Ammonia is one of the most abundantly used chemicals in the world, and it is a potential hydrogen carrier for possible solutions of hydrogen storage and transportation. The conventional method of ammonia production is energy-intensive that requires high pressure and it is dominantly dependent on fossil fuels for hydrogen and nitrogen production. With the electrochemical synthesis option, ammonia can be produced at atmospheric pressures and lower temperature levels. Hydrogen production via water electrolysis using renewable energy can further reduce carbon emissions. In this work, ammonia production via an electrochemical process in a molten salt medium is modelled through electrochemical impedance spectroscopy using several equivalent circuit models. Then, afterwards, for a case study in Qatar to produce renewable ammonia, wind data are used to predict the annual ammonia production rates where the wind turbine rated power is 6 MW. The electrochemical modelling results show that two main parameters emerged as the most influential on the modelling of the low frequencies region; the capacitance of the electrolyte, and the capacitance of the electrode. Furthermore, it is found that the Warburg diffusion limit showed little to negligible effect on the shape in the low-frequency region. The best performing model in terms of the goodness of fit is model 11 with a value of 4.75 x 10(-7), which was modelled by 9 circuit elements (resistors, inductor, capacitors and Gerischer elements) and 12 adjustable parameters. Moreover, Models 11 and 12 reached a goodness of fit in the order of 10-7. Some models included a larger number of variables but offered poorer fit or insignificant improvement, which does not provide justification for the additional elements. (c) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:氨是世界上最丰富的化学品之一,它是蓄水和运输的可能解决方案的潜在氢载体。常规方法的氨化方法是能量密集型,需要高压,并且主要依赖于用于氢和氮生产的化石燃料。通过电化学合成选项,可以在大气压和较低的温度水平下产生氨。利用可再生能源通过水电解产生氢气生产可以进一步降低碳排放。在这项工作中,通过电化盐介质中的电化学方法通过电化学阻抗光谱法通过使用若干等效电路模型来模拟氨化。然后,之后,在卡塔尔生产可再生氨的情况下,风数据用于预测风力涡轮机额定功率为6兆瓦的年度氨生产率。电化学建模结果表明,两个主要参数作为低频率区域建模的最有影响力;电解质的电容和电极的电容。此外,发现Warburg扩散限制对低频区域中的形状略有忽略不计。在适合的优度方面,最佳性能的模型是型号11,值为4.75×10(--7),其由9个电路元件(电阻器,电感器,电容器和Gerischer元件)和12个可调参数建模。此外,型号11和12达到了10-7的优点。有些型号包括更大数量的变量,但提供了更差的拟合或微不足道的改进,这对附加元素没有提供理由。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号