...
首页> 外文期刊>International journal of hydrogen energy >A numerical study on premixed hydrogen/air flames in a narrow channel with thermally orthotropic walls
【24h】

A numerical study on premixed hydrogen/air flames in a narrow channel with thermally orthotropic walls

机译:具有热正向壁的窄通道中预混氢/空气火焰的数值研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Premixed hydrogen/air micro-flame stabilizations in a narrow channel confined by two parallel plates with thermally isotropic and orthotropic wall materials are numerically studied using a OpenFOAM-based, reacting flow code. For a range of simulated equivalence ratios and inflow velocities, two modes of flame shapes (convex-shaped and concave- shaped) are observed, accompanying with variations of the number of heat release rate peaks in flame structures, which can be attributed to the appearance of some critical O-participating and H-participating elementary reactions. Flame stability limits are studied for three sets of wall thermal conductivities of k = 16 W/m K, k = 128 W/m K (isotropic) and k(xx) = 128 W/m K & k(yy) = 16 W/m K (orthotropic). The low velocity limits show invariant with wall thermal conductivities, while the high velocity limits in descending order are found to be: "k = 128 W/m K" "k(xx) = 128 W/m K & k(yy) = 16 W/m K" "k = 16 W/m K". The logic behind is the competition between two mechanisms: the wall pre-heating effects and the transverse heat losses to the ambient. The critical convective heat transfer coefficients that reflect the combustor's ability to resist heat losses are also investigated among the three cases. The reduction of the transverse thermal conductivity can have a high critical coefficient value in the low-inflow velocity regime while makes negligible impacts on extending the critical coefficient in the high-inflow velocity regime. In summary, the use of thermally orthotropic wall materials leads to a slightly decreased high velocity limit ((similar to)3% lower) but a considerably increased critical convective heat transfer coefficient in the high-inflow velocity-regime ((similar to)25% higher), as compared to the thermally isotropic combustor of k = 128 W/m K. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:使用基于OppoFoam的反应流程来数量地研究了由两个平行平板限制的狭窄通道中的预混氢/空气微火焰稳定,这些窄沟道被具有热正向和正交壁材料进行了数量的数量地研究。对于一系列模拟的等效比和流入速度,观察到两种火焰形状(凸形和凹陷),伴随着火焰结构中的热释放速率峰的数量的变化,这可以归因于外观一些关键的O参与和H次参与的基本反应。对k = 16w / m k的三组壁导热率研究了火焰稳定性限制,k = 128w / m k(各向同性)和k(xx)= 128 w / m k&k(yy)= 16 w / m k(正交)。低速限制显示不变性的壁导热率,而下降顺序的高速限制是:“k = 128 w / m k”>“k(xx)= 128 w / m k&k(yy) = 16 w / m k“>”k = 16 w / m k“。背后的逻辑是两个机制之间的竞争:壁预热效果和横向热损失到环境。在三种情况下还研究了反映燃烧器抵抗热损失能力的临界热传热系数。横向导热率的减小可以具有低流入速度制度的高临界系数值,同时对高流入速度制度中的临界系数延伸可忽略不计。总之,使用热正旋转壁材料导致略微降低的高速限制((类似于3%的较低),但高流入速度 - 制度的显着增加的临界对流传热系数((类似于)25与K = 128W / M K的热同位素燃烧器相比,更高)。(C)2019氢能出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第39期|20436-20448|共13页
  • 作者单位

    Wuhan Univ Technol Sch Civil Engn & Architecture Wuhan 430070 Peoples R China|Wuhan Univ Technol Sch Energy & Power Engn Wuhan 430063 Peoples R China;

    Wuhan Univ Technol Sch Civil Engn & Architecture Wuhan 430070 Peoples R China|Wuhan Univ Technol Sch Energy & Power Engn Wuhan 430063 Peoples R China;

    Wuhan Univ Technol Sch Civil Engn & Architecture Wuhan 430070 Peoples R China|Wuhan Univ Technol Sch Energy & Power Engn Wuhan 430063 Peoples R China;

    Univ Queensland Sch Mech & Min Engn Brisbane Qld 4072 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Micro-combustion; Flame stabilization; Conjugate heat transfer; Heat recirculation; Thermally orthotropic walls;

    机译:微燃烧;火焰稳定;共轭传热;热再循环;热正式墙;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号