首页> 外文期刊>International journal of hydrogen energy >Dynamic simulation and control of solar biomass gasification for hydrogen-rich syngas production during allothermal and hybrid solar/autothermal operation
【24h】

Dynamic simulation and control of solar biomass gasification for hydrogen-rich syngas production during allothermal and hybrid solar/autothermal operation

机译:富含富含氢合成气的太阳能生物量气化的动态仿真与控制

获取原文
获取原文并翻译 | 示例
       

摘要

Solar biomass steam gasification using concentrated sunlight offers an efficient means of storing intermittent solar energy into renewable solar fuels while upgrading the carbonaceous feedstock. Such solar-driven (allothermal) processes have demonstrated the ability and the effectiveness for the production of high quality hydrogen-rich syngas, but they suffer from inherent barriers related to the variability of solar energy caused by cloud passages and shut off at night. The concept of hybrid solar/autothermal gasification appears promising to meet the requirement for stable and continuous operation under fluctuating or intermittent solar irradiation. To date, dynamic modelling to simulate coupled solar/combustion heating and steam gasification using real solar irradiation data has never been proposed and could be used to predict the annual performance of large-scale solar gasification plants. In this study, a dynamic mathematical model of a scaled-up solar gasification reactor was developed. The model was composed of a system of differential equations that were derived from unsteady mass and energy conservation equations. After an experimental validation step with the results from a lab-scale solar reactor, the dynamic model was applied at large scale to determine the reactor temperature and syngas production evolution during continuous day and night operation in both solar-only (allothermal) and hybrid solar/autothermal modes. Different reactants feeding management strategies were proposed and compared with the aim of achieving enhanced syngas productivity and optimized use of solar energy during solar-aided steam gasification. It was shown that the hybrid mode with partial oxy-combustion of the feedstock and dynamic feeding control results in the most stable process operation upon fluctuating solar power input, while ensuring continuous production of H-2 and CO at night and during cloudy periods. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:使用浓缩阳光的太阳能生物量蒸汽气化提供了一种有效的方法,可以将间歇太阳能存储到可再生太阳能燃料中,同时升级碳质原料。这种太阳能驱动的(换热)工艺证明了生产高质量的富含氢的合成气的能力和有效性,但它们遭受了与云通道引起的太阳能变异性的固有障碍,并在晚上关闭。混合动力车太阳能/自热气化的概念似乎有望满足在波动或间歇性太阳照射下稳定和连续运行的要求。迄今为止,从未提出使用真实太阳照射数据模拟耦合太阳能/燃烧加热和蒸汽气化的动态建模,并可用于预测大型太阳能气化厂的年度性能。在该研究中,开发了一种缩放太阳能气化反应器的动态数学模型。该模型由源自不稳定质量和节能方程的微分方程组成。在实验验证步骤与实验室级太阳能反应堆的结果之后,在大规模上施加动态模型,以确定在太阳能(换热器)和混合型太阳能中连续日间操作期间的反应器温度和合成气生产演化/自动模式。提出了不同的反应物喂养管理策略,并与在太阳能辅助蒸汽气化期间实现增强的合成气生产率和优化利用太阳能的优化使用。结果表明,具有部分氧燃烧的混合模式和动态馈电控制在波动太阳能输入时最稳定的工艺操作,同时确保在夜间和阴天期间连续生产H-2和CO。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号